Programmable Controllers

C200HX-CPU[][]-ZE
C200HG-CPULI[I-ZE
C200HE-CPUL [J-ZE

OPERATION MANUAL

OMmRoON

C200HX-CPULI[I-ZE
C200HG-CPU[L]-ZE
C200HE-CPUL[-ZE
Programmable Controllers

Operation Manual
Revised May 2003

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1997

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS
PRECAUTIONS ...t iiiiiiiiiiiiiiiiienenenee.. xiil

IIntended AUIENCEottt e e e Xiv
2 General Precautionsttt e Xiv
3 Safety Precautions i Xiv
4 Operating Environment Precautions i ... XV
5 Application Precautions XV
6 Conformance to EC Directivesttt XVvii

SECTION 1

Introductioncciiiiiiiiiiiiiiieneennnes 1
I-1 0 OVEIVIEW .ottt e 2
1-2 The Origins of PCLogic e 2
-3 PC Terminology 3
1-4 OMRON Product Terminology i 4
1-5 Overview of PC Operation it 4
1-6 Programming DeviCcesottt 5
1-7 Available Manuals e 6
1-8 C200HX/HG/HE Featuresttt 7

SECTION 2
Hardware Considerationsceeeeeeeeeeeeens 13

2-1 CPU Unit COMPONENLS . . . ettt ettt e e et e et ettt e 14
2-2 PC ConfigUuratiOnottt e e 17
2-3 CPU Unit Capabilities e 17
2-4 Memory CasSettesttt e 18
2-5 Operating without a Backup Battery 21
2-6 CPUUnitDIP Switch 23

SECTION 3
Memory Areaseeeeeeeeeececeoooooonnnnnns 25

3-1 IntrodUCtiont 27
3-2 Data Area SIUCIUTEttt ettt e e e et et et et et e e 28
3-3 IR (Internal Relay) Area e 32
3-4 SR (Special Relay) Area 36
3-5 AR (Auxiliary Relay) Area 52
3-6 DM (Data MemMOTY) AT . . . ot vttt et ettt et e e e e e 60
3-7 HR (Holding Relay) Area 74
3-8 TC (Timer/Counter) AT€av't ittt ettt et et e e 74
3-9 LR (Link Relay) Area e e e 75
3-10 UM AL . vttt et et e e e e e e 76
3-11 TR (Temporary Relay) Area 77
3-12 EM (Extended Data Memory) Ar€aottt 77

SECTION 4
Writing and Inputting the Program 79

4-1 Basic Procedure 81
4-2 Instruction Terminology i 81
4-3 Program Capacityottt e 82
4-4 Basic Ladder Diagrams 82
4-5 The Programming Console 95
4-6 Preparation for Operation 98
4-7 Inputting, Modifying, and Checking the Program 111

vii

TABLE OF CONTENTS

4-8 Controlling Bit Status 127
4-9 Work Bits (Internal Relays) i 129
4-10 Programming Precautions 131
4-11 Program EXecution i 133
4-12 Special I/O Unit Interface Programs 133
4-13 Analog Timer Unit Programming 137

SECTION 5
Instruction Setcoiiriritieeeeeenenneneneses 143

5-1 NOtAtION . .ottt e e 147
5-2 Imstruction Format e 147
5-3 Data Areas, Definer Values, and Flags i ... 147
5-4 Differentiated InStruCtionsSttt e 149
5-5 Expansion Instructions 150
5-6 Coding Right-hand Instructions 151
5-7 Instruction Set Lists 154
5-8 Ladder Diagram Instructions i 160
5-9 Bit Control INStructionsottt e 161
5-10 INTERLOCK and INTERLOCK CLEAR - IL(002) and ILC(003) 167
5-11 JUMP and JUMP END — JMP(004) and JME0O0S5) 169
5-12 END —END(OOL) . ..ottt e e et e e e 170
5-13 NO OPERATION — NOP(000)ottt e e e e et e 170
5-14 Timer and Counter InStructionst 171
5-15 Data Shifting e 183
5-16 Data MOVEMENTttt e e 192
5-17 Data COMPATiSONottt ettt e et e e e e e 205
5-18 Data COnVEISIONottt ittt et e e e et e e e e e e e 220
5-19 Symbol Math Instructions 244
5-20 BCD Calculationsottt e 264
5-21 Binary Calculations 280
5-22 Special Math Instructions e 294
5-23 Logic INStructionsot 313
5-24 Subroutines and Interrupt Control 317
5-25 Step InStrucCtions 329
5-26 Special InStructions 338
5-27 Network INStrucCtionsSttt e e e 356
5-28 Serial Communications Instructionsttt 368
5-29 Advanced I/O InStruCtionsttt e e 375
5-30 Special I/O Unit InStructionsttt 390

SECTION 6
Program Execution Timingc000 399

6-1 Cycle TIMEo 400
6-2 Calculating Cycle TIMe e 404
6-3 Instruction Execution Times i 407
6-4 T/OResponse TIMe i e 418

SECTION 7

Program Monitoring and Execution 431
7-1 Monitoring Operation and Modifying Data 432
7-2 Programming Console Operationst inininnnnenenenennn.. 432

viii

TABLE OF CONTENTS

SECTION 8
Serial Communicationsc.ceeeeeeeeeeeeeeann

8-1 IntroducCtionttt e
8-2 Host Link CommuniCationsSttt ettt e it
8-3 RS-232C CommuniCationso vttt e ettt e ettt e e
8-4 One-to-one PC Links e
8-5 NT LINKS . .. e e
8-6 The Protocol Macro Function i,

SECTION 9
Troubleshootingcciiiiiiiiiinnnnenennnnns

9-1 Alarm Indicators
9-2 Programmed Alarms and Error Messageso i
9-3 Reading and Clearing Errors and Messages,
9-4 Error MEssagesottt e
9-5 Error Flags
9-6 Host Link Errors

SECTION 10

Host Link Commandscciiiiieeeeennnnnn
10-1 Host Link Command Summary i,
10-2 Host Link End Codes i e e e e e
10-3 Host Link Commandsttt e e e e

Appendices
A Standard Models
B Programming InStructionsttt
C Error and Arithmetic Flag Operation
D Word Assignment Recording Sheets
E Program Coding Sheet
F Data Conversion Tables
G Extended ASCII

GloSSArY ... viiiiiiieneeeeeneennneennnnnonnnnnns
Index ...iiiiiiiiiiiiiiiiiiiiiiieeeneennnnnnnnns

Revision Historycovviiiiiiinneneceneennnnns

459

460
461
468
472
474
475

485

486
486
486
487
491
492

495

496
497
500

543
559
569
575
581
583
585

587
603
609

ix

About this Manual:

This manual describes the operation of the ZE-version C200HX/HG/HE Programmable Controllers, and it
includes the sections described below. Throughout this manual, the ZE-version C200HX/HG/HE Pro-
grammable Controllers are referred to as either C200HX/HG/HE Programmable Controllers (PCs) or as
merely the C200HX/HG/HE.

Installation information is provided in the C200HX/HG/HE Programmable Controller Installation Guide. A
table of other manuals that can be used in conjunction with this manual is provided in Section 1 Introduc-
tion.

Please read this manual completely and be sure you understand the information provided before attempt-
ing to operate the C200HX/HG/HE. Be sure to read the precautions in the following section.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. Descriptions of Peripheral Devices used with the
C200HX/HG/HE PCs and a table of other manuals available to use with this manual for special PC appli-
cations are also provided.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration, describes
the indicators that are referred to in other sections of this manual, and explains how to use the Memory
Cassette to manage UM and IOM data.

Section 3 Memory Areas takes a look at the way memory is divided and allocated and explains the infor-
mation provided there to aid in programming. It explains how I/O is managed in memory and how bits in
memory correspond to specific I/O points. It also provides information on System DM, a special area in
C200HX/HG/HE PCs that provides the user with flexible control of PC operating parameters.

Section 4 Writing and Entering Programs explains the basics of ladder-diagram programming, looking
at the elements that make up the parts of a ladder-diagram program and explaining how execution of this
program is controlled. It also explains how to convert ladder diagrams into mnemonic code so that the
programs can be entered using a Programming Console.

Section 5 Instruction Set describes all of the instructions used in programming.

Section 6 Program Execution Timing explains the cycling process used to execute the program and
tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Program Debugging and Execution explains the Programming Console procedures used to
input and debug the program and to monitor and control operation.

Section 8 Communications provides an overview of the communications features provided by the
C200HX/HG/HE.

Section 9 Troubleshooting provides information on error indications and other means of reducing down-
time. Information in this section is also useful when debugging programs.

Section 10 Host Link Commands explains the host link commands which can be used for host link com-
munications via the C200HX/HG/HE ports.

The Appendices provide tables of standard OMRON products available for the C200HX/HG/HE PCs,
reference tables of instructions, a coding sheet to help in programming and parameter input, and other
information helpful in PC operation.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

xi

This section provides general precautions for using the Programmable Controller (PC) and related devices.

PRECAUTIONS

The information contained in this section is important for the safe and reliable application of the PC. You must read

this section and understand the information contained before attempting to set up or operate a PC system.

1 Intended Audience
2 General Precautions
3 Safety Precautions

4 Operating Environment Precautions i

5 Application Precautions

6 Conformance to EC Directives

Xiv
Xiv
Xiv
XV
XV
Xvii

xiii

Safety Precautions

1

2

3

xiv

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

¢ Personnel in charge of installing FA systems.
» Personnel in charge of designing FA systems.
» Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating OMRON PCs.
Be sure to read this manual before attempting to use the software and keep this
manual close at hand for reference during operation.

It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above mentioned
applications.

Safety Precautions

/I\ WARNING

/I\ WARNING

/I\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PC or another external factor
affecting the PC operation. Not doing so may result in serious accidents.

e Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

e The PC will turn OFF all outputs when its self-diagnosis function detects any
error or when a severe failure alarm (FALS) instruction is executed. As a coun-
termeasure for such errors, external safety measures must be provided to en-
sure safety in the system.

e The PC outputs may remain ON or OFF due to deposition or burning of the
output relays or destruction of the output transistors. As a countermeasure for

Application Precautions 5

such problems, external safety measures must be provided to ensure safety in
the system.

e When the 24-VDC output (service power supply to the PC) is overloaded or
short-circuited, the voltage may drop and result in the outputs being turned
OFF. As a countermeasure for such problems, external safety measures must
be provided to ensure safety in the system.

&Caution Execute online edit only after confirming that no adverse effects will be caused
by extending the cycle time. Otherwise, the input signals may not be readable.

&Caution Confirm safety at the destination node before transferring a program to another
node or changing contents of the /O memory area. Doing either of these without
confirming safety may result in injury.

&Caution Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in burning
or malfunction.

4 Operating Environment Precautions

Do not operate the control system in the following places.
¢ Where the PC is exposed to direct sunlight.
¢ Where the ambient temperature is below 0°C or over 55°C.

¢ Where the PC may be affected by condensation due to radical temperature
changes.

* Where the ambient humidity is below 10% or over 90%.

* Where there is any corrosive or inflammable gas.

* Where there is excessive dust, saline air, or metal powder.
o Where the PC is affected by vibration or shock.

¢ Where any water, oil, or chemical may splash on the PC.

&Caution The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PC.

&WARNING Failure to abide by the following precautions could lead to serious or possibly
fatal injury. Always heed these precautions.

¢ Always ground the system to 100 Q or less when installing the system to pro-
tect against electrical shock.

¢ Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Performing any of the following with the power supply turned ON may
lead to electrical shock:

¢ Mounting or removing any Units (e.g., I/O Units, CPU Unit, etc.) or memory
cassettes.

* Assembling any devices or racks.

XV

Application Precautions

Xvi

&Caution

&Caution

¢ Connecting or disconnecting any cables or wiring.

Failure to abide by the following precautions could lead to faulty operation of the
PC or the system or could damage the PC or PC Units. Always heed these pre-
cautions.

» Use the Units only with the power supplies and voltages specified in the opera-
tion manuals. Other power supplies and voltages may damage the Units.

» Take measures to stabilize the power supply to conform to the rated supply if it
is not stable.

* Provide circuit breakers and other safety measures to provide protection
against shorts in external wiring.

* Do not apply voltages exceeding the rated input voltage to Input Units.

« Do not apply voltages exceeding the maximum switching capacity to Output
Units.

» Always disconnect the functional ground terminal when performing withstand
voltage tests.

 Carefully follow all of the installation instructions provided in the manuals, in-
cluding the Installation Guide.

» Provide proper shielding when installing in the following locations:
o Locations subject to static electricity or other sources of noise.
¢ Locations subject to strong electromagnetic fields.

e Locations subject to possible exposure to radiation.
e Locations near to power supply lines.

» Be sure to tighten Backplane screws, terminal screws, and cable connector
screws securely.

» Do not attempt to take any Units apart, to repair any Units, or to modify any
Units in any way.

The following precautions are necessary to ensure the general safety of the sys-
tem. Always heed these precautions.

¢ Provide double safety mechanisms to handle incorrect signals that can be
generated by broken signal lines or momentary power interruptions.

¢ Provide external interlock circuits, limit circuits, and other safety circuits in
addition to any provided within the PC to ensure safety.

o Always test the operation of the user program sufficiently before starting actual
system operation.

¢ Always confirm that there will be no adverse affects on the system before
changing the PC’s operating mode.

¢ Always confirm that there will be no adverse affects on the system before
force-setting/resetting any bits in PC memory.

¢ Always confirm that there will be no adverse affects on the system before
changing any set values or present values in PC memory.

¢ Whenever the CPU Unit has been replaced, be sure that all required memory
data, such as that in the HR and DM areas, has been transferred to the new
CPU Unit before starting operation.

* Never pull on or place objects on cables or cords, or wires may be broken.

Conformance to EC Directives 6

6 Conformance to EC Directives

Observe the following precautions when installing the C200HX/HG/HE PCs that
conform to the EC Directives.

Provide reinforced insulation or double insulation for the DC power source con-
nected to the DC I/O Unit and for the Power Supply Unit.

Use a separate power source for the DC I/O Unit from the external power supply
for the Relay Output Unit.

Xvii

SECTION 1
Introduction

This section gives a brief overview of the history of Programmable Controllers and explains terms commonly used in ladder-
diagram programming. It also provides an overview of the process of programming and operating a PC and explains basic
terminology used with OMRON PCs. Descriptions of Programming Devices used with the C200HX/HG/HE PCs, a table of
other manuals available to use with this manual for special PC applications, and a description of the new features of the
C200HX/HG/HE PCs are also provided.

L1 OVEIVIEW ottt e e e e e e e e e e e e e
1-2 The Origins of PCLogIiCo e e
1-3 PCTerminologyovvunt et e e e e e e e e
1-4 OMRON Product Terminologyttt
1-5 Overview of PC Operationttt et
1-6 Programming DEevVICeSttt e
1-7 Available Manuals
1-8 C200HX/HG/HE Featuresttt et

1-8-1 ZE-version C200HX/HG/HE Improvementscoeueu....

1-8-2 C200HS and C200HX/HG/HE Capabilities,

1-8-3 Program Compatibility

O 00 1 1O DL & B WD

The Origins of PC Logic

Section 1-2

1-1 Overview

A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The pro-
gram controls the PC so that when an input signal from an input device turns ON,
the appropriate response is made. The response normally involves turning ON
an output signal to some sort of output device. The input devices could be photo-
electric sensors, pushbuttons on control panels, limit switches, or any other de-
vice that can produce a signal that can be input into the PC. The output devices
could be solenoids, switches activating indicator lamps, relays turning ON mo-
tors, or any other devices that can be activated by signals output from the PC.

For example, a sensor detecting a passing product turns ON an input to the PC.
The PC responds by turning ON an output that activates a pusher that pushes
the product onto another conveyor for further processing. Another sensor, posi-
tioned higher than the first, tums ON a different input to indicate that the product
is too tall. The PC responds by turning ON another pusher positioned before the
pusher mentioned above to push the too-tall product into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of the
type of control operation that PCs can achieve. Actually even this example is
much more complex than it may at first appear because of the timing that would
be required, i.e., “How does the PC know when to activate each pusher?” Much
more complicated operations, however, are also possible. The problem is how
to get the desired control signals from available inputs at appropriate times.

To achieve proper control, the C200HX/HG/HE PCs use a form of PC logic
called ladder-diagram programming. This manual is written to explain ladder-
diagram programming and to prepare the reader to program and operate the
PC.

1-2 The Origins of PC Logic

Relay vs. PC Terminology

PCs historically originate in relay-based control systems. And although the inte-
grated circuits and internal logic of the PC have taken the place of the discrete
relays, timers, counters, and other such devices, actual PC operation proceeds
as if those discrete devices were still in place. PC control, however, also pro-
vides computer capabilities and accuracy to achieve a great deal more flexibility
and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and con-
cepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from relay
terminology, but the concepts are the same.

The following table shows the relationship between relay terms and the PC
terms used for OMRON PCs.

Relay term PC equivalent
contact input or condition
coll output or work bit
NO relay normally open condition
NC relay normally closed condition

PC Terminology

Section 1-3

Actually there is not a total equivalence between these terms. The term condi-
tion is only used to describe ladder diagram programs in general and is specifi-
cally equivalent to one of a certain set of basic instructions. The terms input and
output are not used in programming per se, except in reference to I/O bits that
are assigned to input and output signals coming into and leaving the PC. Nor-
mally open conditions and normally closed conditions are explained in 4-4 Basic
Ladder Diagrams.

1-3 PC Terminology

PC

Inputs and Outputs

Controlled System and
Control System

Although also provided in the Glossary at the back of this manual, the following
terms are crucial to understanding PC operation and are thus explained here.

Because the C200HX/HG/HE PCs are Rack PCs, there is no one product that is
a C200HX/HG/HE PC. That is why we talk about the configuration of the PC,
because a PC is a configuration of smaller Units.

To have a functional PC, you would need to have a CPU Rack with at least one
Unit mounted to it that provides I/O points. When we refer to the PC, however, we
are generally talking about the CPU Unit and all of the Units directly controlled by
it through the program. This does not include the I/O devices connected to PC
inputs and outputs.

If you are not familiar with the terms used above to describe a PC, refer to Sec-
tion 2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where a
signal enters the PC is called an input point. This input point is allocated a loca-
tion in memory that reflects its status, i.e., either ON or OFF. This memory loca-
tion is called an input bit. The CPU Unit, in its normal processing cycle, monitors
the status of all input points and turns ON or OFF corresponding input bits ac-
cordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an output
bit is turned ON to send a signal to an output device through an output point. The
CPU Unit periodically turns output points ON or OFF according to the status of
the output bits.

These terms are used when describing different aspects of PC operation. When
programming, one is concerned with what information is held in memory, and so
I/O bits are referred to. When talking about the Units that connect the PC to the
controlled system and the places on these Units where signals enter and leave
the PC, 1/O points are referred to. When wiring these 1/0 points, the physical
counterparts of the 1/O points, either terminals or connector pins, are referred to.
When talking about the signals that enter or leave the PC, one refers to input
signals and output signals, or sometimes just inputs and outputs. It all depends
on what aspect of PC operation is being talked about.

The Control System includes the PC and all I/O devices it uses to control an ex-
ternal system. A sensor that provides information to achieve control is an input
device that is clearly part of the Control System. The controlled system is the
external system that is being controlled by the PC program through these 1/O
devices. I/0O devices can sometimes be considered part of the controlled sys-
tem, e.g., a motor used to drive a conveyor belt.

Overview of PC Operation

Section 1-5

1-4 OMRON Product Terminology

OMRON products are divided into several functional groups that have generic
names. Appendix A Standard Models list products according to these groups.
The term Unit is used to refer to all of the OMRON PC products. Although a Unit
is any one of the building blocks that goes together to form a C200HX/HG/HE
PC, its meaning is generally, but not always, limited in context to refer to the Units
that are mounted to a Rack. Most, but not all, of these products have names that
end with the word Unit.

The largest group of OMRON products is the I/O Units. These include all of the
Rack-mounting Units that provide non-dedicated input or output points for gen-
eral use. I/O Units come with a variety of point connections and specifications.

High-density I/O Units are designed to provide high-density I/O capability and
include Group 2 High-density I/0 Units and Special I/O High-density I/0O Units.

Special I/0 Units are dedicated Units that are designed to meet specific needs.
These include some of the High-density I/O Units, Position Control Units, High-
speed Counter Units, and Analog I/O Units.

Link Units are used to create Link Systems that link more than one PC or link a
single PC to remote 1/O points. Link Units include Remote I/O Units, PC Link
Units, Host Link Units, SYSMAC NET Link Units, and SYSMAC LINK Units.
Other product groups include Programming Devices, Peripheral Devices,
and DIN Rail Products.

1-5 Overview of PC Operation

1,2 3.

The following are the basic steps involved in programming and operating a
C200HX/HG/HE PC. Assuming you have already purchased one or more of
these PCs, you must have a reasonable idea of the required information for
steps one and two, which are discussed briefly below. This manual is written to
explain steps three through six, eight, and nine. The relevant sections of this
manual that provide more information are listed with each of these steps.

1. Determine what the controlled system must do, in what order, and at what
times.

2. Determine what Racks and what Units will be required. Refer to the
C200HX/HG/HE PC Installation Guide. If a Link System is required, refer to
the appropriate System Manual.

3. On paper, assign all input and output devices to I/O points on Units and de-
termine which I/O bits will be allocated to each. If the PC includes Special /O
Units or Link Systems, refer to the individual Operation Manuals or System
Manuals for details on I/O bit allocation. (Section 3 Memory Areas)

4. Using relay ladder symbols, write a program that represents the sequence
of required operations and their inter-relationships. Be sure to also program
appropriate responses for all possible emergency situations. (Section 4
Writing and Inputting the Program, Section 5 Instruction Set, Section 6 Pro-
gram Execution Timing)

5. Input the program and all required operating parameters into the PC. (Sec-
tion 4-7 Inputting, Modifying, and Checking the Program.)

6. Debug the program, first to eliminate any syntax errors, and then to find ex-
ecution errors. (Section 4-7 Inputting, Modifying, and Checking the Pro-
gram, Section 7 Program Monitoring and Execution, and Section 9
Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started as
soon as step 3 has been completed. Refer to the C200HX/HG/HE PC Instal-
lation Guide and to Operation Manuals and System Manuals for details on
individual Units.

Programming Devices

Section 1-6

Control System Design

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

8. Test the program in an actual control situation and carry out fine tuning as
required. (Section 7 Program Monitoring and Execution and Section 9
Troubleshooting)

9. Record two copies of the finished program on masters and store them safely
in different locations. (Section 4-7 Inputting, Modifying, and Checking the
Program)

Designing the Control System is the first step in automating any process. A PC
can be programmed and operated only after the overall Control System is fully
understood. Designing the Control System requires, first of all, a thorough un-
derstanding of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled system.

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output signal
from the PC. Keep in mind that the number of I/O points available depends on
the configuration of the PC. Refer to 3-3 IR Area for details on 1/O capacity and
the allocation of I/O bits to 1/O points.

Next, determine the sequence in which control operations are to occur and the
relative timing of the operations. Identify the physical relationships between the
I/0 devices as well as the kinds of responses that should occur between them.

For instance, a photoelectric switch might be functionally tied to a motor by way
of a counter within the PC. When the PC receives an input from a start switch, it
could start the motor. The PC could then stop the motor when the counter has
received a specified number of input signals from the photoelectric switch.

Each of the related tasks must be similarly determined, from the beginning of the
control operation to the end.

The actual Units that will be mounted or connected to PC Racks must be deter-
mined according to the requirements of the 1/0O devices. Actual hardware specifi-
cations, such as voltage and current levels, as well as functional considerations,
such as those that require Special I/O Units or Link Systems will need to be con-
sidered. In many cases, Special I/O Units, Intelligent /0 Units, or Link Systems
can greatly reduce the programming burden. Details on these Units and Link
Systems are available in appropriate Operation Manuals and System Manuals.

Once the entire Control System has been designed, the task of programming,
debugging, and operation as described in the remaining sections of this manual
can begin.

1-6 Programming Devices

Programming Console

SYSMAC-CPT Support
Software

The following Programming Devices can be used in programming, either to in-
put/debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data. Model numbers for all devices listed
below are provided in Appendix A Standard Models. OMRON product names
have been placed in bold when introduced in the following descriptions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. All Programming Consoles are connected directly to the CPU Unit
without requiring a separate interface.

The SYSMAC-CPT Support Software is the only support software currently
compatible with the C200HX/HG/HE PCs. This software is designed to run on
IBM PC/AT or compatibles and allows you to perform all the operations of the
Programming Console as well as many additional ones. PC programs can be
written on-screen in ladder-diagram form as well as in mnemonic form. As the
program is written, it is displayed on a display, making confirmation and modifi-

5

Available Manuals Section 1-7

cation quick and easy. Syntax checks may also be performed on the programs
before they are downloaded to the PC.

The SYSMAC-CPT Support Software does not support any of the original
C200HX/HG/HE CPU Units at present.

1-7 Available Manuals

The following table lists other manuals that may be required to program and/or
operate the C200HX/HG/HE PCs. Operation Manuals and/or Operation Guides
are also provided with individual Units and are required for wiring and other
specifications.

Name Cat. No. Contents
SYSMAC WS02-CXPC1-E CX-Programmer W361 Provides information on how to use the
Operation Manual CX-Programmer, a programming device that
supports the CS1-series PCs.
SYSMAC-CPT Support Software Quick Start W332 Programming procedures for using the
Guide and User Manual W333 SYSMAC-CPT Support Software
Data Access Console Operation Guide W173 Data area monitoring and data modification
procedures for the Data Access Console
Position Control Unit Operation Manuals NC111: W137 | Information on Position Control Unit
NC112: W128
NC211: W166
High-density and Multiplex I/O Units Operation W133 Information on the High-density 1/0 Units.
Guide
Analog I/0O Units Operation Guide w127 Information on the C200H-AD00O1 and
C200H-DA001 Analog I/O Units
W325 Information on the C200H-AD003, C200H-DA003,
C200-DA004, and C200H-MADO1 Analog I/O Units
Analog Input Unit Operation Manual w229 Information on the C200H-AD002 Analog Input Unit
Temperature Sensor Unit Operation Guide W124 Information on Temperature Sensor Unit
Temperature Control Unit Operation Manual W225 Information on Temperature Control Unit
High-speed Counter Unit Operation Manual W141 Information on High-speed Counter Unit
ASCII Unit Operation Manual W165 Information on ASCII Unit
Voice Unit Operation Manual W172 Information on Voice Unit
ID Sensor Unit Operation Guide W153 Information on ID Sensor Unit
Fuzzy Logic Unit Operation Manual W208 Information on Fuzzy Logic Unit
Fuzzy Support Software Operation Manual w210 Information on the Fuzzy Support Software which
supports the Fuzzy Logic Units
Cam Positioner Unit Operation Manual w224 Information on Cam Positioner Unit
SYSMAC NET Link Unit Operation Manual w114 Information on building a SYSMAC NET Link
System and thus create an optical LAN integrating
PCs with computers and other peripheral devices
SYSMAC LINK System Manual W174 Information on building a SYSMAC LINK System to
enable automatic data transfer, programming, and
programmed data transfer between the PCs in the
System
Wired Remote 1/0O System Manual W120 Information on building a Wired Remote I/O System
(SYSMAC BUS) to enable remote 1/O capability
Optical Remote I/O System Manual W136 Information on building an Optical Remote I/O
(SYSMAC BUS) System to enable remote I/O capability
PC Link System Manual W135 Information on building a PC Link System to
automatically transfer data between PCs
Host Link System Manual W143 Information on building a Host Link System to
(SYSMAC WAY) manage PCs from a ‘host’ computer
Controller Link Operation Manual W309 Information on building a PC Link System to
automatically/manually transfer data between PCs

C200HX/HG/HE Features Section 1-8
Name Cat. No. Contents
PC Card Unit Operation Manual W313 Information on using a PC Card Unit to use PC
cards.
PID Control Unit Operation Manual W241 Information on PID Control Unit
Heat/Cool Temperature Control Unit Operation W240 Information on Heating and Cooling Temperature
Manual Control Unit

1-8 C200HX/HG/HE Features

The new ZE-version C200HX/HG/HE-ZE CPU Units have a larger instruction
set than the original C200HX/HG/HE CPU Units and instructions are identified
with 3-digit function codes in the new CPU Units.

1-8-1 ZE-version C200HX/HG/HE Improvements

Instructions

Other Improvements

The following table shows the instructions that were added to the ZE-version
C200HX/HG/HE CPU Units.

Instruction
Bit Control BIT TEST: TST(350) and TSTN(351)
Instructions
Special EM BANK TRANSFER: BXFR(125)
instructions
Input Equality: =(300), =L(301), =S(302), =SL(303)

Comparison Inequality: <>(305), <>L(306), <>S(307), <>SL(308)

instructions
Less Than: <(310), <L(311), <S(312), <SL(313)

Less Than or Equal: <=(315), <=L(316), <=S(317), <=SL(318)

Greater Than: >(320), >L(321), >S(322), >SL(323)

Greater Than or Equal: >=(325), >=L(326), >=S(327), >=SL(328)
Symbol Math | Binary Addition: +(400)/+L(401)/+C(402)/+CL(403)

instructions ' BCp Addition: +B(404)/ +BL(405)/+BC(406)/+BCL(407)

Binary Subtraction: —(410)/ —L(411)/-C(412)/-CL(413)

BCD Subtraction: —-B(414)/ —BL(415)/~-BC(416)/-BCL(417)
Binary Multiplication: *(420)/ *L(421)/*U(422)/*UL(423)

BCD Multiplication: *B(424)/ *BL(425)

Binary Division: /(430)/ /L(431)//U(432)//UL(433)

BCD Division: /B(434)/ /BL(435)

The following improvements have also been made for the ZE-version CPU
Units.

¢ Function codes have been changed to three digits so that almost all of the in-
structions can be used without allocating function codes.

e The SYSMAC-CPT Support Software can be used to greatly increase pro-
gramming/monitoring functionality. (The previous Support Software cannot be
used.)

 EM Area addresses can be directly address in instruction operands. This es-
sentially doubles the word memory that can be accessed directly from the pro-
gram (6,655 DM Area words plus 6,143 EM Area words).

e The maximum user memory capacity has been doubled from 32K words to
64K words.

C200HX/HG/HE Features Section 1-8

1-8-2 C200HS and C200HX/HG/HE Capabilities

The following table shows the capabilities of the C200HX/HG/HE PCs and
compares them with those of the C200HS PCs.

Function Capability

C200HX/HG/HE C200HS

Memory User memory (UM) C200HE-CPU11-ZE: 3.2K words 15.2K words
C200HE-CPU[2-ZE: 7.2K words

C200HG-CPU[]3-ZE: 15.2K words
C200HX-CPU[J4-ZE: 31.2K words
C200HX-CPUL[]5-ZE: 63.2K words

Normal DM 6,144 words (DM 0000 to DM 6143) 6,144 words

(The C200HE-CPU11-ZE doesn’t have (DM 0000 to DM 6143)
DM 4096 to DM 5999.)

Fixed DM 512 words (DM 6144 to DM 6655) 512 words

(DM 6144 to DM 6655)
Expansion DM 0 to 3,000 words (DM 7000 to DM 9999) 0 to 3,000 words

(DM 7000 to DM 9999)
Extended Data Memory 6,144 words (EM 0000 to EM 6143) None
(EM) C200HE: None

C200HG: 6,144 words x 1 bank
C200HX-CPU[4-ZE: 6,144 words x 3 banks
C200HX-CPUG65-ZE: 6,144 words x 8 banks
C200HX-CPUS85-ZE: 6,144 words x 16 banks

1/0 allocation Expansion Racks 3 Racks 2 Racks

(2 Racks in the C200HE-CPUJI-ZE or
C200HX/HG-CPU3[J-ZE/4[-ZE)

Group-2 Multipoint 1/0 Unit numbers 0to 9, Ato F Unit numbers 0 to 9

Units (Incompatible with the C200HE-CPU11-ZE.)
(Unit numbers 0 to 9 with the
C200HE-CPU[2-ZE,
C200HX/HG-CPU3[-ZE/4[1-ZE.)

Special I/O Units Unit numbers 0to 9, Ato F Unit numbers 0 to 9

(Unit numbers 0 to 9 with the
C200HE-CPUI[I-ZE or
C200HX/HG-CPU3[]-ZE/4[I-ZE.)

Execution time Basic instructions (LD) 0.104 us (C200HX) 0.375 us
0.156 us (C200HG)
0.313 us (C200HE)

MOV/(021) 0.417 s (C200HX) 19.00 s
0.625 s (C200HG)
1.250 us (C200HE)

ADD(030) 16.65 us (C200HX/HG) 40.10 us
31.45 us (C200HE)

Other instructions C200HX/HG: 1/3 to 2/3 of C200HS time | ---
C200HE: 3/4 to 4/5 of C200HS time

Common processes 0.7 ms (C200HX/HG) 0.7ms

(END(001) processing) 2.1 ms (C200HE)

I/O refresh time Same as the C200HS, although part of ~-=
Special I/O refreshing takes 1/2 to 2/3 the
C200HS time.

C200HX/HG/HE Features Section 1-8
Function Capability
C200HX/HG/HE C200HS
CPU Unit RS-232C port Available in the Available in the
functions C200HX/HG/HE-CPU4[-ZE/6[1-ZE/8[0-ZE | C200HS-CPU2[-E

/3-E

Clock function

Available in all except the
C200HE-CPU11-ZE

Available in all models

SYSMAC NET Link and
SYSMAC LINK functions

Communications Boards can be installed in
all PCs except the C200HE-CPU11-ZE.
(Board model numbers:
C200HW-COMO01/04-E)

Available in the
C200HS-CPU3I-E

Communications
Boards

Communications Boards can be installed in
all PCs except the C200HE-CPU11-ZE.
These Boards can provide the following
functions:

SYSMAC NET Link and SYSMAC LINK,
Communications Ports (Ports 1 and 2), and
Protocol Macro functions

Special /0 Units

The IORD(222) and IOWR(223) instructions
allow data to be transferred to and from
Special I/O Units.

Interrupts Interrupt Input Units 2 Units (16 inputs) 1 Unit (8 inputs)
Communications Board Can be set.
interrupts
Response characteristics | Same as the C200HS, although a 1-ms Normal mode: 10 ms
response is possible in the C200HW-SLK[I[] | High-speed mode: 1 ms
(Always 10 ms when a
SYSMAC NET Link or
SYSMAC LINK is used.)
PTs NT Link (1:1) or NT Link (1:N) NT Link (1:1)
(Up to 8 PTs can be connected from the
RS-232C port through an RS-422/485 Link
Adapter. When the C200HE-CPUL[][J-ZE
with a Communications Board is used, only 3
PTs can be connected)
SYSMAC LINK | Service time 3.5 ms max. (1 operating level) 10.8 ms max.

(1 operating level)

Remote programming

Possible from the Peripheral Port or RS-232C
Ports (including Communications Boards).

Possible from the
Peripheral Port.

Effect on response time

None

10 ms in any mode

1-8-3 Program Compatibility
Programs developed for the C200H, C200HS, and C200HX/HG/HE can be
used in the C200HX/HG/HE(-ZE) PCs. Detailed procedures for the individual
steps involved in transferring programs can be found in the SYSMAC Support
Software Operation Manual and the SYSMAC-CPT Support Software Opera-
tion Manual.

C200HX/HG/HE Precautions

C200HX/HG/HE PC.
o If a C200H program including the SET SYSTEM instruction (SYS(49)) is trans-
ferred to the C200HX/HG/HE, the operating parameters set by this instruction
will be transferred to the C200HX/HG/HE’s PC Setup area (DM 6600, DM
6601, and DM 6655) and overwrite any current settings. Be sure to confirm
that the settings in these words are correct before using the PC after program

transfer.

Observe the following precautions when transferring C200H programs to a

o If the C200H program accesses the C200H’s error log in DM 0969 to DM 0999,
the addresses of the words being accessed must be changed to DM 6000 to
DM 6030, which is the error log area for the C200HX/HG/HE.

C200HX/HG/HE Features Section 1-8

¢ Any programs that rely on the execution cycle time (i.e., on the time required to
execute any one part of all of the program) must be adjusted when used on the
C200HX/HG/HE, which provides a much faster cycle time.

ZE-version C200HX/HG/HE Observe the following precautions using a C200HX/HG/HE-CPU[J[J-ZE CPU
Precautions Unit.

e Comment lines in ZE-version programs created using the SYSMAC-CPT Sup-
port Software are stored in CMT instructions (instructions that store line com-
ment position information) in the CPU Unit. The size of C200HX/HG/HE pro-
grams with line comments will thus increase if the programs are copied to a
ZE-version C200HX/HG/HE CPU Unit using the SYSMAC-CPT Support Soft-
ware. (The CMT instructions will be displayed on a Programming Console, but
they cannot be added, changed, or deleted from a Programming Console.)

The ZE-version C200HX/HG/HE CPU Units do not support the differentiated
form of the TEN KEY instruction (@ TKY), although it can be input from the
SYSMAC-CPT. Do not use this instruction.

Care must be taken when converting expansion instructions in C200HX/HG/
HE programs when importing, copying, or pasting them into ZE-version
C200HX/HG/HE programs. If the default expansion instruction function codes
are used, they will automatically be converted to 3-digit function codes. The
instructions listed in the right column in the following table will not convert prop-
erly and a message saying that there are no function codes for them will be
displayed. Ether use the instructions listed in the right column or correct the
program after conversion. (Even the instructions that don’t convert can be
used by assigning function codes to them as expansion instructions.)

Instructions that Don’t Recommended Instructions
Convert Automatically
ADBL +CL
DBS /
DBSL /L
MBS *
MBSL L
SBBL -CL
BXF2 BXFR
(Specify expansion DM directly as an operand.)
XFR2 XFER
(Specify expansion DM directly as an operand.)
IEMS None
(It is possible to specify expansion DM directly as
an operand.)

The SYSMAC-CPT cannot be connected via a Host Link Unit.

o If the cycle time is longer than 100 ms when editing online from the SYSMAC-
CPT, change the increment for the communications monitoring time (i.e., the
timeout offset) to 10 s.

o It requires some time to write data to a Memory Casettes mounted to the CPU
Unit. When using the SYSMAC-CPT to write data to a Memory Cassette from
the user memory or I/O memory, change the increment for the communica-
tions monitoring time (i.e., the timeout offset) to 15 s before turning ON the re-
quired Control Bit in the SR Area.

Using Internal Memory The following procedure outlines the steps to transfer C200H programs to the
user memory inside the C200HX/HG/HE.
1,2, 3... 1. Transfer the program and any other required data to the Support Software

work area. This data can be transferred from a C200H CPU Unit, from floppy
disk, or from a C200HS Memory Unit.

10

C200HX/HG/HE Features

Section 1-8

Using Memory Cassettes

1,2, 3.

or

8.
9.

To transfer from a C200H CPU Unit, set the PC to the C200H, connect the
Support Software to the C200H, go online, and transfer the program and
any other require data to the Support Software work area. You will probably
want to transfer DM data and the I/O table, if you have created an I/O table
for the C200H.

To transfer from a hard disk, set the Support Software to offline mode and
load the program, DM data, and I/O table data to the Support Software work
area. These will need to be loaded separately. You will probably want to load
DM data and the I/O table, if you have created an I/O table for the C200H.

. Go offline if the Support Software is not already offline.
. Change the PC setting for the Support Software.
. If you want to transfer /O comments together with the program to the

C200HX/HG/HE, allocate UM area for I/O comments.

. Connect the Support Software to the C200HX/HG/HE and go online.
. Make sure that pin 1 on the C200HX/HG/HE’s CPU Unit is OFF to enable

writing to the UM area.

. Transfer the program and and any other require data to the C200HX/HG/

HE. You will probably want to transfer DM data and the I/O table, if you have
created an /O table for the C200H.

Turn the C200HX/HG/HE OFF and then back ON to reset it.
Test program execution before attempting actual operation.

The following procedure outlines the steps to transfer C200H programs to the
C200HX/HG/HE via EEPROM or EPROM Memory Cassettes. This will allow
you to read the program data from the Memory Cassette automatically at
C200HX/HG/HE startup. The first four steps of this procedure is the same as
those used for transferring directly to the C200HX/HG/HE’s internal memory
(UM area).

1

or

a ~ 0N

. Transfer the program and any other required data to the Support Software

work area. This data can be transferred from a C200H CPU Unit, from floppy
disk, or from a Memory Unit.

To transfer from a C200H CPU Unit, set the Support Software to the C200H,
connect the Support Software to the C200H, go online, and transfer the pro-
gram and any other require data to the Support Software work area. You will
probably want to transfer DM data and the I/O table, if you have created an
I/O table for the C200H.

To transfer from a hard disk, set the Support Software to offline mode and
load the program, DM data, and I/O table data to the Support Software work
area. These will need to be loaded separately. You will probably want to load
DM data and the I/O table, if you have created an I/O table for the C200H.

. Go offline if the Support Software is not already offline.

. Change the PC setting for the Support Software.

. Change the PC setting for the Support Software to the C200HX/HG/HE.

. If you want to transfer /O comments together with the program to the

C200HX/HG/HE, allocate UM area for I/O comments.

. Allocate expansion DM words DM 7000 to DM 7999 in the UM area using the

UM allocation operation from the Support Software.

. Copy DM 1000 through DM 1999 to DM 7000 through DM 7999.
. Write “0100” to DM 6602 to automatically transfer the contents of DM 7000

through DM 7999 to DM 1000 through DM 1999 at startup.

. Use the following procedure to transfer to an EEPROM Memory Cassette.

a) Connect the Support Software to the C200HX/HG/HE and go online.

11

C200HX/HG/HE Features

Section 1-8

12

b) Make sure that pin 1 on the C200HX/HG/HE’s CPU Unit is OFF to enable
writing to the UM area.

c) Transfer the program and any other require data to the C200HX/HG/HE.
You will probably want to transfer DM data and the I/O table, if you have
created an I/O table for the C200H. Make sure you specify transfer of the
Expansion DM Area and, if desired, the I/O Comment Area.

d) Turn ON SR 27000 from the Support Software to transfer UM data to the
Memory Cassette and continue from step 10.
10. Turn ON pin 2 on the C200HX/HG/HE’s DIP switch to enable automatic
transfer of Memory Cassette data to the CPU Unit at startup.
11. Turn the C200HX/HG/HE OFF and then back ON to reset it and transfer
data from the Memory Cassette to the CPU Unit.

12. Test program execution before attempting actual operation.

SECTION 2
Hardware Considerations

This section provides information on hardware aspects of the C200HX/HG/HE that are relevant to programming and software
operation. These include CPU Unit components, the basic PC configuration, CPU Unit capabilities, and Memory Cassettes.
This information is covered in detail in the C200HX/HG/HE Installation Guide.

2-1

22
23
2-4

2-5

CPU Unit Components

2-1-1 CPU Unit Indicatorsottt e e
2-1-2 Programming Device Connectionc.ciiiiniunenen ..

PC Configuration

CPU Unit Capabilities

Memory Cassettes . . .

2-4-1 Hardware and Software Settingsttt
2-4-2 Writing/Reading UM Data i,
2-4-3 Writing/Reading IOM Data i,
Operating without a Backup Battery

CPU Unit DIP Switch

14
15
15
17
17
18
19
19
20
21
23

13

CPU Unit Components Section 2-1

2-1 CPU Unit Components

The following diagram shows the main CPU Unit components.

COMB
COMA

] Indicators
SYSMAC C200HX
PROGRAMMASLE CONTROLLER
Puss

— DIP switch

Communications Board ——F——
(The C200HW-COMO06-E
is mounted to this CPU T
Unit.) ——

RUN
ERR
INH
CoMm
omron
‘hr‘?__ Memory Cassette
L]
—— Peripheral port

— RS-232C port

Memory Cassette The CPU Unit has a compartment to connect the Memory Cassette to the CPU
Unit. The Memory Cassette works as a RAM together with the built-in RAM of the
CPU Unit.

Peripheral Port A Programming Device can be connected to the peripheral port.
RS-232C Port The CPU Unit has a built-in RS-232C port.

Communications Board The CPU Unit has a compartment to connect the Communications Board to the
CPU Unit.

DIP Switch The PC operates according to the DIP switch settings of the CPU Unit. The DIP
switch of the CPU Unit for the C200HX/HG/HE has six pins. For the function of
each of the pins, refer to the following table. (All six pins are OFF when the PC is
shipped.)

(-
H_K
[~
W~
L
[
—NO
OFF<ON

14

CPU Unit Components

Section 2-1

Pin | Setting Function
1 ON Data cannot be written to the UM area.
OFF Data can be written to the UM area.
2 ON Memory Cassette data is read automatically at startup.
OFF Memory Cassette data is not read automatically at startup.
3 ON Programming Console displays messages in English.
OFF Programming Console displays messages in Japanese.
4 ON The expansion instructions can be set.
OFF The expansion instructions cannot be set (default setting).
5 ON Sets the following conditions for the communications port (including
when a CQM1-CIF02 is connected to the Peripheral Port):
1 start bit, 7 data bits, even parity, 2 stop bit, 9,600 bps baud rate
OFF Cancels the above settings.
6 ON Programming Console is in expansion terminal mode (AR 0712 is
turned ON).
OFF Programming Console is in normal mode (AR 0712 is turned OFF).

2-1-1 CPU Unit Indicators

CPU Unit indicators provide visual information on the general operation of the
PC. Although not substitutes for proper error programming using the flags and
other error indicators provided in the data areas of memory, these indicators pro-
vide ready confirmation of proper operation.

Indicator Meaning
RUN (green) Lit when the PC is operating normally.
ERR (red) Flashes if the PC detects any non-fatal error in operation. The PC

will continue operating.

Lit if the PC detects any fatal error in operation. The PC will stop

operating. After the PC stops operating, the RUN indicator will be
OFF and all output signals of the Output Units will be interrupted

(turned OFF).

INH (orange) Lit when the Load OFF flag (AR bit) is ON, in which case all
output signals of the Output Units will be interrupted (turned

OFF).
COMM Flashes when the CPU Unit is communicating with the device
(orange) connected to the peripheral port or RS-232C port.

2-1-2 Programming Device Connection

Programming Console

Data Access Console

A Programming Console or IBM PC/AT running the SYSMAC-CPT Support
Software can be used to program and monitor the C200HX/HG/HE PCs.

A C200H-PR027-E or CQM1-PRO01-E Programming Console can be con-
nected as shown in the diagram. The C200H-PR027-E is connected via the
C200H-CN222 or C200H-CN422 Programming Console Connecting Cable,
which must be purchased separately. A Connecting Cable is provided with the
CQM1-PROO01-E.

A C200H-DACO1 Data Access Console can be connected via the C200H-
CN222 or C200H-CN422 Programming Console Connecting Cable, which must
be purchased separately. The following operations are not available when the
C200H-DACO1 is used with the C200HX/HG/HE:

Set value read and change

Error message display

15

CPU Unit Components Section 2-1

IBM PC/AT with An IBM PC/AT or compatible computer with SYSMAC-CPT Support Software

SYSMAC-CPT Support can be connected as shown in the diagram.
Software

C200H-LK201-V1

C200HX/HG/HE

Mounted
directly

Host Link Unit

RS-232C Peripheral
port port
Connecting | cooon.cnzeziaze XW2Z-2005/500S CQM1-CIF02
Cables (2 m/4 m) (See note)
O [] =D
Programming Console . .)
Connecting Cable Connecting Cable Connecting Cable
N / j
_ L
Programming Support | \soi.creiEe
Device @ Software
=
iEEEE TR
. SYSMAC-CPT
IBM PC/AT or Compatible Support Software
Programming Console for Data Access Console for Programming Console
C200H C200H
C200H-PRO27-E C200H-DACO1 CQM1-PROO01-E

Note The connector of the XW2Z-200S/500S Connecting Cable is a male 25-pin ter-

minal. An adapter is required for the 9-pin male D-sub terminal on the IBM PC/AT
or compatible side.

16

CPU Unit Capabilities Section 2-3

2-2 PC Configuration

The basic PC configuration consists of two types of Rack: a CPU Rack and Ex-
pansion 1/0O Racks. The Expansion I/O Racks are not a required part of the basic
system. They are used to increase the number of I/O points. An illustration of
these Racks is provided in 3-3 IR Area. A third type of Rack, called a Slave Rack,
can be used when the PC is provided with a Remote 1/0O System.

A C200HX/HG/HE CPU Rack consists of three components: (1) The CPU Back-
plane, to which the CPU Unit and other Units are mounted. (2) The CPU Unit,
which executes the program and controls the PC. (3) Other Units, such as /0
Units, Special I/O Units, and Link Units, which provide the physical I/O terminals
corresponding to 1/O points.

A C200HX/HG/HE CPU Rack can be used alone or it can be connected to other
Racks to provide additional I/O points. The CPU Rack provides three, five, eight,
or ten slots to which these other Units can be mounted depending on the back-
plane used.

CPU Racks

Expansion I/O Racks An Expansion I/O Rack can be thought of as an extension of the PC because it
provides additional slots to which other Units can be mounted. It is built onto an
Expansion 1/O Backplane to which a Power Supply and up to ten other Units are

mounted.

An Expansion I/O Rack is always connected to the CPU Unit via the connectors
on the Backplanes, allowing communication between the two Racks. Up to three
Expansion 1/0 Racks (two with the C200HE PCs) can be connected in series to
the CPU Rack.

Only I/O Units and Special I/O Units can be mounted to Slave Racks. All /O
Units, Special I/O Units, Group-2 High-density 1/0 Units, Remote I/0 Master
Units, PC and Host Link Units, can be mounted to any slot on all other Racks.
Interrupt Input Units must be mounted to Backplanes with the “-V2” suffix on the
model number.

Refer to the C200HX/HG/HE Installation Guide for details about which slots can
be used for which Units and other details about PC configuration. The way in
which 1/O points on Units are allocated in memory is described in 3-3 IR Area.

2-3 CPU Unit Capabilities

The following table shows the capabilities of the C200HX/HG/HE CPU Units.
The CPU4[]-ZE, CPU6[]-ZE, and CPUS8[I-ZE are equipped with RS-232C

Unit Mounting Position

ports.
Item C200HE- C200HG- C200HX-
CPU11-ZE | CPU32-ZE/ | CPU33-ZE/ | CPU53-ZE/ | CPU34-ZE/ | CPU54-ZE/ | CPU65-ZE/
42-ZE 43-ZE 63-ZE 44-ZE 64-ZE 85-ZE
Program capacity 3.2K 7.2K words | 15.2K words 31.2K words 63.2K
words words
DM capacity 4K words | 6K words 6K words 6K words
EM capacity None 6K words x 1 bank CPUL[J4-ZE: 6K words x 3 banks
CPUB5-ZE: 6K words x 8 banks
CPU85-ZE: 6K words x 16 banks
Basic instruction 0.3 us min. 0.15 ps min. 0.1 us min. 0.1 us min.
execution time
Max. number of 2 Racks 2 Racks 3 Racks 2 Racks 3 Racks
Expansion 1/0 Racks
Max. number of Group-2 | None 10 Units 10 Units 16 Units 10 Units 16 Units
High-density 1/0 Units
Max. number of Special 10 Units 10 Units 16 Units 10 Units 16 Units
1/0 Units

17

Memory Cassettes Section 2-4
Item C200HE- C200HG- C200HX-
CPU11-ZE | CPU32-ZE/ | CPU33-ZE/ | CPU53-ZE/ | CPU34-ZE/ | CPU54-ZE/ | CPU65-ZE/
42-ZE 43-ZE 63-ZE 44-ZE 64-ZE 85-ZE
Clock function No Yes Yes Yes
glommunications Board No Yes Yes Yes
ot

2-4 Memory Cassettes

The C200HX/HG/HE comes equipped with a built-in RAM for the user’s pro-
gram, so a normal program be created even without installing a Memory Cas-
sette. An optional Memory Cassette can be used to store the program, PC Set-
up, I/O comments, DM area and other data area contents. Refer to the C200HX/
HG/HE Installation Guide for details on installing Memory Cassettes.
Memory Cassette Functions The Memory Cassette can be used to store and retrieve UM and IOM data; UM
stored in the Memory Cassette can also be compared to the UM in the PC.
1,2, 3. 1. The contents of UM (user memory) can be stored in the Memory Cassette
for later retrieval or verification. If pin 2 of the CPU Unit DIP switch is set to
ON, the contents of the Memory Cassette are automatically retrieved when
the PC is turned ON.

The UM area contains the ladder program, fixed DM (such as the PC Setup),
expansion DM, I/O comments, the I/O table, and the UM area allocation in-
formation.

2. The contents of the PC’s I1/0O memory (IOM) can be stored in the Memory
Cassette for later retrieval.

IOM includes the IR area, SR area, LR area, HR area, AR area, timer and
counter PVs, DM 0000 through DM 6143, and EM 0000 through EM 6143.

UM and IOM data is completely compatible between the ZE-versions of the
C200HX/HG/HE and other C200HX/HG/HE PCs, except the new instructions
(symbol math and input comparison instructions) that aren’t supported by the
original C200HX/HG/HE CPU Units.

Compatible Memory

There are two types of Memory Cassette available: EEPROM and EPROM. The
Cassettes

following table summaries the Memory Cassettes which can be used with the
C200HX/HG/HE PCs. Refer to Appendix A Standard Models for actual Memory
Cassette model numbers and specifications.

Memory | Capacity Comments
EEPROM | 4K, 8K, The EEPROM Memory Cassette can be used to write
16K, 32K, |and read UM and I/O data to the CPU Unit. It does not
or 64K require any backup power supply and will retain its data
words even after it is removed from the CPU Unit.
EPROM 16K or 32K | An EPROM Memory Cassette can be used only to back-
words up and read UM data.
Use a standard PROM writer to write the program to the
EPROM Memory Cassette.

Note 1. Data stored in EEPROM won't be reliable after the contents have been over-

written 50,000 times.

2. The EPROM chip is not included with the Memory Cassette; it must be pur-
chased separately.

18

Memory Cassettes

Section 2-4

2-4-1 Hardware and Software Settings

Switch Settings

SR Area Flags and Control
Bits

The hardware and software settings related to Memory Cassette operations are
described below.

Switch 1 on the Memory Cassette is turned OFF when the Memory Cassette is
shipped. Check the setting on switch 1 before installation.

Memory | Switch 1 Function
Cassette | setting
EEPROM | ON The data in the Memory Cassette is write-protected.
OFF The data in the Memory Cassette can be overwritten.
EPROM ON 27512-equivalent ROM-KD-B EPROM
(32K words, 150 ns access time)
OFF 27256-equivalent ROM-JD-B EPROM
(16K words, 150 ns access time)

SR 269 through SR 273 contain flags and control bits related to Memory Cas-
sette contents and operation. Refer to 3-4 SR (Special Relay) Area for details.

2-4-2 Writing/Reading UM Data

Note

Writing UM Data to a
Memory Cassette 123

Reading UM Data from a
Memory Cassette

1,2, 3.

1,2, 3.

Use the following procedures to transfer UM data to or from a Memory Cassette.

UM contains the ladder program, fixed DM (such as the PC Setup), expansion
DM, I/O comments, the I/O table, and the UM area allocation information.

Use the following procedure to write UM data to an EEPROM Memory Cassette.

1. Before turning ON the C200HX/HG/HE’s power supply, make sure that
switch 1 on the Memory Cassette is set to OFF.

2. Turn ON the C200HX/HG/HE and write the ladder program or read an exist-
ing program from a data disk.

3. Switch the C200HX/HG/HE to PROGRAM mode.

4. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to turn ON SR 27000 (the Save UM to Cassette Bit). The

data will be written from the PC to the Memory Cassette. SR 27000 will be
turned OFF automatically after the data transfer has been completed.

5. If you want to write-protect the data on the Memory Cassette, turn OFF the
PC and set switch 1 of the Memory Cassette to ON. If this switch is ON, data
in the Memory Cassette will be retained even if SR 27000 is turned ON.

There are two ways to read UM data from a Memory Cassette: automatic trans-
fer at startup or a one-time transfer using a Programming Device.
(There is no function that automatically writes data to the Memory Cassette.)

Automatic Transfer at Startup:

1. Turn ON pin 2 of the CPU Unit’s DIP switch.
2. Install the Memory Cassette containing the data into the C200HX/HG/HE.

3. Turn ON the C200HX/HG/HE’s power supply. The contents of the Memory
Cassette will be transferred to the CPU Unit automatically. A memory error
will occur if the data couldn’t be transferred.

One-time Transfer using a Programming Device:

1. Install the Memory Cassette containing the data into the C200HX/HG/HE.
2. Turn ON the C200HX/HG/HE and switch it to PROGRAM mode.

3. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to turn ON SR 27001 (the Load UM from Cassette Bit).
The data will be read from the Memory Cassette to the PC. SR 27001 will be
turned OFF automatically after the data transfer has been completed.

19

Memory Cassettes Section 2-4

Comparing UM Data on a Use the following procedure to the UM data on an Memory Cassette to the UM
Memory Cassette data in the PC.

1,2, 3... 1. Switch the C200HX/HG/HE to PROGRAM mode.

2. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to turn ON SR 27002 (the Compare UM to Cassette Bit).
The data will be compared between the PC and the Memory Cassette.
SR 27002 will be turned OFF automatically after the data comparison has
been completed.

3. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to check the status of SR 27003 (the Comparison Re-
sults Flag).

Note If data verification is executed in a mode other than PROGRAM mode, an opera-
tion continuance error (FAL90) will occur and 27002 will turn ON (1). Although
27003 will also turn ON, comparison will not be performed. If data comparison is
executed without mounting the Memory Cassette, 27003 will turn ON (1).

2-4-3 Writing/Reading IOM Data

Use the following procedures to transfer IOM data to or from a Memory Cas-
sette. (A PROM writer is required to write data to an EPROM Memory Cassette.
Refer to the SYSMAC Support Software Operation Manual for details.)
IOM includes the IR area, SR area, LR area, HR area, AR area, timer and count-
er PVs, DM 0000 through DM 6143, and EM 0000 through EM 6143.
The capacity of the Memory Cassette must match the memory capacity of the
CPU Unit when IOM data is transferred to or from a Memory Cassette. The
memory requirements are as follows:
Writing IOM: CPU Unit’s capacity < Memory Cassette’s capacity
Reading IOM: CPU Unit’s capacity = Amount of IOM data in Memory Cas-
sette

Note In C200HS PCs, the data transfer will be performed even if the memory capaci-
ties don’t match, an error which can easily go unnoticed.

The following table shows the Memory Cassette capacity required to store 1 or
more banks of EM.

Memory Cassette capacity Number of EM banks

4K words None (A 4K-word Memory Cassette can’t be used to
store other IOM data, either.)

8K words None

16K words 1 bank (Only EM bank 0 can be stored.)

32K words 3 banks (EM banks 0 through 2 can be stored.)

Bits 08 through 15 of SR 273 indicate the EM bank number of the IOM data
stored in the Memory Cassette.

Content of Meaning

SR 27308 to SR 27315

00 There is no Memory Cassette installed, no IOM data in
the Memory Cassette, or no EM data in the Memory Cas-
sette.

01 The Memory Cassette contains IOM data that includes
EM bank 0 only.

04 The Memory Cassette contains IOM data that includes
EM banks 0 through 2.

Writing IOM Data to a Use the following procedure to write IOM data to an EEPROM Memory Cas-

Memory Cassette sette.

1,2, 3... 1. Before turning ON the C200HX/HG/HE’s power supply, make sure that
switch 1 on the Memory Cassette is set to OFF.

20

Operating without a Backup Battery Section 2-5

2. Turn ON the C200HX/HG/HE and switch it to PROGRAM mode.

3. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to turn ON SR 27300 (the Save IOM to Cassette Bit).
The data will be written from the PC to the Memory Cassette. SR 27300 will
be turned OFF automatically after the data transfer has been completed.

4. If you want to write-protect the data on the Memory Cassette, turn OFF the
PC and set switch 1 of the Memory Cassette to ON. If this switch is ON, data
in the Memory Cassette will be retained even if SR 27300 is turned ON.

Reading IOM Data from a Use the following procedure to read IOM data from a Memory Cassette. The
Memory Cassette contents of the error history (DM 6000 through DM 6030) can’t be read from the
Memory Cassette.

Note There is no function that automatically reads IOM data from the Memory Cas-
seftte.

1,2, 3. 1. Install the Memory Cassette containing the data into the C200HX/HG/HE.
2. Turn ON the C200HX/HG/HE and switch it to PROGRAM mode.

3. Use a host computer running SYSMAC-CPT Support Software or a Pro-
gramming Console to turn ON SR 27301 (the Load IOM from Cassette Bit).
The data will be read from the Memory Cassette to the PC. SR 27301 will be
turned OFF automatically after the data transfer has been completed.

2-5 Operating without a Backup Battery

An EEPROM or EPROM Memory Cassette can be used together with various
memory settings to enable operation without a backup battery. The following
conditions must be met.

1,2, 3... 1. The user program must be written to an EPROM or EEPROM Memory Cas-
sette.

. The clock cannot be used. (A battery is required to run the internal clock.)

. The PC Setup must be set to not detect low battery voltage.

. The system must be designed to run properly even if DM area data is lost.

. The Output OFF Bit (SR 25215) must be programmed to remain OFF. (The
status of this bit will be unstable without a battery.)

25314 (Always OFF Flag)
: : 25215

6. The Forced Status Hold Bit (SR 25211) and Data Retention Control Bit
(SR 25212) must be set to be cleared in the PC Setup. (The status of these
bits will be unstable without a battery.)

7. The DIP switch on the CPU Unit must be set so that pin 1 is OFF and pin 2 is
ON.

If these conditions can be met, use the following procedures to operate without a
backup battery.

a b~ WD

EEPROM Memory Cassette

1,2, 3... 1. Allocate UM area using the SYSMAC Support Software (SSS) if you want to
use Expansion DM for Special I/O Units or if you want to store 1/0O comments
in the PC.

2. Write and transfer the user program, including a line using the Always OFF
Flag (SR 25314) to ensure that the Output OFF Bit (SR 25215) remains

OFF.
25314 (Always OFF Flag)
: : 25215

21

Operating without a Backup Battery Section 2-5

EPROM Memory Cassette

22

1,2 3.

3.

o N o o

Set the following in the PC Setup

DM 6601 = 0000 (To reset Forced Status Hold Bit (SR 25211) and I/O Status
Hold Bit (SR 25212) at startup)

DM 6655 bits 12 to 15 = 1, bits 4 to 7 = 0 (To not detect low battery voltage)

DM 6600 and DM 6602 to DM 6654 = As required by the application.

. Set Fixed DM (including the Communications Board settings in DM 6144 to

DM 6599) and Expansion DM as required by the application.

. Check operation.

. Mount the Memory Cassette in the CPU Unit.

. Switch to PROGRAM mode.

. Turn ON SR 27000 to transfer the program, Fixed DM, and the PC Setup to

the Memory Cassette. (This bit will automatically reset itself if turned ON
from a Programming Console. It will need to be turned OFF by clearing
forced status if it is set from the SSS.)

. Turn ON the write protect switch on the Memory Cassette.
. Turn OFF pin 1 and turn ON pin 2 on the DIP switch on the CPU Unit to auto-

matically transfer the program, Fixed DM, and the PC Setup from the
Memory Cassette when power is turned ON.

. Allocate UM area using the SYSMAC Support Software (SSS) if you want to

use Expansion DM for Special I/O Units or if you want to store /O comments
in the PC.

. Write and transfer the user program, including a line using the Always OFF

Flag (SR 25314) to ensure that the Output OFF Bit (SR 25215) remains

OFF.
25314 (Always OFF Flag)
: : 25215

. Set the following in the PC Setup

DM 6601 = 0000 (To reset Forced Status Hold Bit (SR 25211) and I/O Status
Hold Bit (SR 25212) at startup)

DM 6655 bits 12 to 15 = 1, bits 4 to 7 = 0 (To not detect low battery voltage)

DM 6600 and DM 6602 to DM 6654 = As required by the application.

. Set Fixed DM (including the Communications Board settings in DM 6144 to

DM 6599) and Expansion DM as required by the application.

5. Check operation.
6. Transfer the program, Fixed DM, and the PC Setup to the SSS.

. Write the program, Fixed DM, and the PC Setup to ROM using the SSS and

a PROM writer.

. Mount the ROM onto the Memory Cassette.

9. Mount the Memory Cassette in the CPU Unit.

. Turn OFF pin 1 and turn ON pin 2 on the DIP switch on the CPU Unit to auto-

matically transfer the program, Fixed DM, and the PC Setup from the
Memory Cassette when power is turned ON.

CPU Unit DIP Switch

Section 2-6

2-6 CPU Unit DIP Switch

The 6 pins on the DIP switch control six of the CPU Unit’s operating parameters.

Pin

Item

Setting

Function

Memory protect

ON

The UM area’ cannot be overwritten from a Programming Device.

OFF

The UM area’ can be overwritten from a Programming Device.

Automatic transfer of Memory | ON

Cassette contents

The contents of the Memory Cassette will be automatically
transferred to the internal RAM at start-up.

OFF

The contents will not be automatically transferred.

Message language

ON

Programming Console messages will be displayed in English.

OFF

Programming Console messages will be displayed in the language
stored in system ROM. (Messages will be displayed in Japanese with
the Japanese version of system ROM.)

Expansion instruction setting ON

Expansion instructions will be set by user. Normally ON when using a
host computer for programming/monitoring.

OFF

Expansion instructions set to defaults.

Communications parameters ON

Standard communications parameters (see note 1) will be set for the
following serial communications ports.

e Built-in RS-232C port
¢ Peripheral port (only when a CQM1-CIF01/-CIF02 Cable is con-
nected. Does not apply to Programming Console.)

Note 1. Standard communications parameters are as follows:
Serial communications mode: Host Link or peripheral bus;
start bits: 1; data length: 7 bits; parity: even; stop bits: 2;
baud rate: 9,600 bps

2. The CX-Programmer running on a personal computer can

be connected to the peripheral port via the peripheral bus
using the above standard communications parameters.

OFF

The communications parameters for the following serial

communications ports will be set in PC Setup as follows:

e Built-in RS-232C port: DM 6645 and DM 6646

e Peripheral port: DM 6650 and DM 6651

Note When the CX-Programmer is connected to the peripheral port
with the peripheral bus, either set bits 00 to 03 of DM 6650 in the
Fixed DM Area to 0 Hex (for standard parameters), or set bits 12

to 15 of DM 6650 to 0 Hex and bits 00 to 03 of DM 6650 to 1 Hex
(for Host Link or peripheral bus) separately.

Expansion TERMINAL mode ON
setting when AR 0712 is ON OFE

Expansion TERMINAL mode (Programming Console); AR 0712 ON.

Normal mode (Programming Console); AR 0712: OFF

Note 1. The UM area contains the ladder program, fixed DM (including the PC Set-
up), expansion DM, I/O comments, the 1/O table, and the UM area allocation
information.

2. All six pins are set to OFF when the PC is shipped.

23

SECTION 3
Memory Areas

Various types of data are required to achieve effective and correct control. To facilitate managing this data, the PC is provided
with various memory areas for data, each of which performs a different function. The areas generally accessible by the user
for use in programming are classified as data areas. The other memory area is the UM Area, where the user’s program is
actually stored. This section describes these areas individually and provides information that will be necessary to use them. As
a matter of convention, the TR area is described in this section, even though it is not strictly a memory area.

3-1 Introductionttt e 27
3-1-1 Data Area OVEIVIEWttt ettt ettt 27
3-1-2 IR/SR Area OVerviewttt 28
3-2 Data Area SIIUCHUIEttt ittt et e et e e e e e e 28
3-3 IR (Internal Relay) Areat e e e 32
3-4 SR (Special Relay) Areat e 36
3-4-1 Controller Link/SYSMAC NET/SYSMAC LINK System 41
3-4-2 Remote /O Systemst 43
3-4-3 Link System Flags and Control Bits 43
3-4-4 Forced Status Hold Bit 45
3-4-5 /O Status Hold Bit 46
3-4-6 Output OFF Bit 46
3-4-7 FAL (Failure Alarm) Areattt et e 46
3-4-8 LowBattery Flag e 46
3-49 CycleTime Error Flag i 47
3-4-10 T/O Verification Error Flag i 47
3-4-11 FirstCycle Flag e 47
3-4-12 Clock Pulse Bitst 47
3-4-13 Step Flag o 48
3-4-14 Group-2 Error Flago e 48
3-4-15 Special Unit Error Flag 48
3-4-16 Instruction Execution Error Flag, ER 48
3-4-17 Arithmetic Flags 48
3-4-18 Interrupt SUBTOULING ATEAS . ..o\ttt ittt e et 49
3-4-19 RS-232C Port Communications Areasc.c.veueneunenen... 49
3-4-20 Peripheral Port Communications Areasuuuitnevnenenenenn.. 50
3-4-21 Memory Cassette Areasv. ittt 50
3-4-22 DataTransfer Error Bits 51
3-4-23 Ladder Diagram Memory AT€asoeuuuiunenennunenennenennn. 51
3-4-24 Memory Error Flags 51
3-4-25 DataSave/Load Bits 52
3-4-26 Transfer Error Flagso i 52
3-4-27 PCSetup Error Flags 52
3-4-28 Clock and Keyboard Mappingttt 52
3-4-29 Group-2 Error Flagso e 52
3-4-30 Special I/O Unit Restart Bits and Error Flags 52
3-5 AR (Auxiliary Relay) Areat e 52
3-5-1 Restarting Special /O Units 54
3-5-2 Slave Rack Error Flags 55
3-5-3 Group-2 Error Flags o 55
3-5-4 Optical I/O Unit and I/O Terminal Error Flags 55
3-5-5 SYSMAC LINK System Data Link Settings 56
3-5-6 Controller Link System Data Link Start Bit 56
3-5-7 Error History Bits 56

25

26

3-6

3-7
3-8
3-9
3-10
3-11
3-12

3-5-8 Active Node Flagso
3-5-9 Controller Link/SYSMAC LINK/SYSMAC NET Link System Service Time ..
3-5-10 Calendar/Clock Areaand Bits,
3-5-11 TERMINAL Mode Key Bitsot
3-5-12 Power OFF Counterttt e
3-5-13 SYSMAC LINK - Programming Device Flags
3-5-14 Cycle Time Flag o e e e
3-5-15 Link Unit Mounted Flags e
3-5-16 CPU Unit-mounting Device Mounted Flag
3-5-17 FPD Trigger Bit o
3-5-18 Data Tracing Flags and Control Bits
3-5-19 Cycle Time Indicatorsttt
DM (Data MemoOry) AT€a . . .« o vttt e et et e e e e e
3-6-1 Expansion DM Areaiouiniuiiiii i
3-6-2 Special /O UnitDataot e
3-6-3 Special O UNItSt
3-6-4 Error HiStory AT€aottt e e e
3-6-5 PO SetUP .ottt
3-6-6 Communications Board Settings,
3-6-7 Special I/O Unit Area Settingsoiuiiiiininnnen...
HR (Holding Relay) Areat
TC (Timer/COUNLET) ATEA oottt ettt e e e e et e e et eeees
LR (Link Relay) Areat e e
L8 N
TR (Temporary Relay) Area i e
EM (Extended Data Memory) Areaooiininiini i
3-12-1 Usingthe EM Areat
3-12-2 TheCurrent EM Bank

57
57
57
58
58
59
59
59
59
59
59
60
60
61
62
62
64
65
71
73
74
74
75
76
77
77
77
78

Introduction

Section 3-1

3-1

Introduction

3-1-1 Data Area Overview

Details, including the name, size, and range of each area are summarized in the
following table. Data and memory areas are normally referred to by their acro-
nyms, e.g., the IR Area, the SR Area, etc.

Area Size Range Comments

Internal Relay Area 1 3,776 bits IR 000 to IR 235 Refer to 3-1-2 IR/SR Area Overview and 3-3 IR
(Internal Relay) Area for more details.

Special Relay Area 1 312 bits SR 236 to SR 255 Refer to 3-1-2 IR/SR Area Overview and 3-4 SR

Special Relay Area2 | 704 bits SR256t0 SR299 | (Special Relay) Area for more details.

Internal Relay Area 2 3,392 bits IR 300 to IR 511 Refer to 3-1-2 IR/SR Area Overview and 3-3 IR
(Internal Relay) Area for more details.

Temporary Relay Area | 8 bits TR 00 to TR 07 Used to temporarily store and retrieve execution
conditions when programming certain types of
branching ladder diagrams.

Holding Relay Area 1,600 bits HR 00 to HR 99 Used to store data and to retain the data values
when the power to the PC is turned OFF.

Auxiliary Relay Area 448 buts AR 00 to AR 27 Contains flags and bits for special functions. Re-
tains status during power failure.

Link Relay Area 1,024 bits LR 00to LR 63 Used for data links in the PC Link System.

(These bits can be used as work words or work
bits when not used in the PC Link System.)

Timer/Counter Area

512 counters/
timers

TC 000 to TC 511

Used to define timers and counters, and to
access completion flags, PV, and SV.

TIM 000 through TIM 015 are refreshed via
interrupt processing as high-speed timers.

Area

Data Memory Area 6,144 words DM 0000 to DM 6143 | Read/Write
1,000 words | DM 0000 to DM 0999 | Normal DM.
2,600 words | DM 1000 to DM 2599 | Special I/0 Unit Area
3,400 words | DM 2600 to DM 5999 | Normal DM
31 words DM 6000 to DM 6030 | History Log
(44 words) | DM 6100 to DM 6143 | Link test area (reserved)
Fixed DM Area 512 words DM 6144 to DM 6599 | Fixed DM Area (read only)
|56 words | DM 6600 to DM 6655 | PC Setup
Extended Data Memory | 6,144 words EM 0000 to EM 6143 | The amount of EM area memory depends on the

PC model being used. PCs are available with no
EM, one 6,144-word bank, or three 6,144-word
banks.

Like DM, the EM memory can be accessed in
word units only and EM area data is retained
when the power to the PC is turned OFF.

Work Bits and Words

Flags and Control Bits

When some bits and words in certain data areas are not being used for their in-
tended purpose, they can be used in programming as required to control other
bits. Words and bits available for use in this fashion are called work words and
work bits. Most, but not all, unused bits can be used as work bits. Those that can
be used are described area-by-area in the remainder of this section. Actual ap-
plication of work bits and work words is described in Section 4 Writing and Input-
ting the Program.

Some data areas contain flags and/or control bits. Flags are bits that are auto-
matically turned ON and OFF to indicate particular operation status. Although
some flags can be turned ON and OFF by the user, most flags are read only; they
cannot be controlled directly.

27

Data Area Structure Section 3-2

Control bits are bits turned ON and OFF by the user to control specific aspects of
operation. Any bit given a name using the word bit rather than the word flag is a
control bit, e.g., Restart bits are control bits.

3-1-2 IR/SR Area Overview

When designating a data area, the acronym for the area is always required for
any area except the IR and SR areas. Although the acronyms for the IR and SR
areas are given for clarity in text explanations, they are not required, and not en-
tered, when programming.

The IR and SR areas are divided into two 256-word sections; the boundary be-
tween these sections is located in the SR area between SR 255 and SR 256.
When the SR area is used as an operand in an instruction, the operand cannot
cross over this boundary. Also, basic instructions that access bits in the second
section (SR 25600 through IR 51115) have somewhat longer execution times.

Area Range Comments
IR Area 1 | I/O Area 1 IR 000 to IR 029 I/0 words are allocated to the CPU Rack and
Expansion I/O Racks by slot position.
Group-2 High-density I/0 Unit | IR 030 to IR 049 Allocated to Group-2 High-density I/O Units and to
and B7A Interface Unit Area B7A Interface Units 0 to 9
SYSMAC BUS and IR 050 to IR 099 Allocated to Remote 1/O Slave Racks 0 to 4 or to
CompoBus/D Output Area CompoBus/D Network Outputs.
Special I/O Unit Area 1 IR 100 to IR 199 Allocated to Special 1/0 Units 0 to 9.
Optical 1/0 Unit and 1/0 IR 200 to IR 231 Allocated to Optical I/O Units and 1/O Terminals.
Terminal Area
Work Area IR 232 to IR 235 For use as work bits in the program.
SR Area 1 SR 23600 to SR 25507 | Contains system clocks, flags, control bits, and
status information.
SR Area 2 SR 256 to SR 299 Contains flags, control bits, and status informa-
tion. SR 290 to SR 297 are used as I/O words by
MCRO(099).
IR Area 2 | I/0O Area 2 IR 300 to IR 309 These 1/O words are allocated to a third
Expansion 1/0 Rack by slot position.
Work Area IR 310 to IR 329 For use as work bits in the program.
Group-2 High-density 1/0 Unit | IR 330 to IR 341 Allocated to Group-2 High-density 1/0 Units A to F.
Area 2
Work Area IR 342 to IR 349 For use as work bits in the program.
CompoBus/D Input Area IR 350 to IR 399 Allocated to CompoBus/D Inputs
Special I/O Unit Area 2 IR 400 to IR 459 Allocated to Special I/0O Units A to F.
Work Area IR 460 to IR 511 For use as work bits in the program.

Note 1. Referto 3-3 IR (Internal Relay) Area for more details on the IR area.
Refer to 3-4 SR (Special Relay) Area for more details on the SR area.

2. Bitsin IR Area 1 and IR Area 2 can can be used in programming as work bits
when not used for their allocated purpose.

3-2 Data Area Structure

When designating a data area, the acronym for the area is always required for
any but the IR and SR areas. Although the acronyms for the IR and SR areas are
often given for clarity in text explanations, they are not required, and not entered,
when programming. Any data area designation without an acronym is assumed
to be in either the IR or SR area. Because IR and SR addresses run consecu-
tively, the word or bit addresses are sufficient to differentiate these two areas.

28

Data Area Structure Section 3-2

An actual data location within any data area but the TC area is designated by its
address. The address designates the bit or word within the area where the de-
sired data is located. The TC area consists of TC numbers, each of which is used
for a specific timer or counter defined in the program. Refer to 3-8 TC Area for
more details on TC numbers and to 5-14 Timer and Counter Instructions for in-
formation on their application.

The rest of the data areas (i.e., the IR, SR, HR, DM, AR, and LR areas) consist of
words, each of which consists of 16 bits numbered 00 through 15 from right to
left. IR words 000 and 001 are shown below with bit numbers. Here, the content
of each word is shown as all zeros. Bit 00 is called the rightmost bit; bit 15, the
leftmost bit.

The term least significant bit is often used for rightmost bit; the term most signifi-
cant bit, for leftmost bit. These terms are not used in this manual because a
single data word is often split into two or more parts, with each part used for dif-
ferent parameters or operands. When this is done, the rightmost bits of a word
may actually become the most significant bits, i.e., the leftmost bits in another
word, when combined with other bits to form a new word.

Bit number 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
IRwordoo0 [0 [o[o[JoJoJoJoJoJoJoJoJoJoJoJoJ]o]
IRwordoot | o[o|o]Jo|[o]J]of[o|l]o[o|[o]J]o[o]o[o|[]o]of

The DM area is accessible by word only; you cannot designate an individual bit
within a DM word. Data in the IR, SR, HR, AR, and LR areas is accessible either
by word or by bit, depending on the instruction in which the data is being used.

To designate one of these areas by word, all that is necessary is the acronym (if
required) and the two-, three-, or four-digit word address. To designate an area
by bit, the word address is combined with the bit number as a single four- or five-
digit address. The following table show examples of this. The two rightmost dig-
its of a bit designation must indicate a bit between 00 and 15, i.e., the rightmost
digit must be 5 or less the next digit to the left, either O or 1.

The same TC number can be used to designate either the present value (PV) of

the timer or counter, or a bit that functions as the Completion Flag for the timer or
counter. This is explained in more detail in 3-8 TC Area.

Area Word designation Bit designation
IR 000 00015 (leftmost bit in word 000)
SR 252 25200 (rightmost bit in word 252)
DM DM 1250 Not possible
TC TC 215 (designates PV) TC 215 (designates completion flag)
LR LR 12 LR 1200
Data Structure Word data input as decimal values is stored in binary-coded decimal (BCD);

word data entered as hexadecimal is stored in binary form. Each four bits of a
word represents one digit, either a hexadecimal or decimal digit, numerically
equivalent to the value of the binary bits. One word of data thus contains four
digits, which are numbered from right to left. These digit numbers and the corre-
sponding bit numbers for one word are shown below.

Digit number 3 2 1 0
[

Bit number 15 14 13 12'11 10 09 08'07 06 05 04|03 02 01 00

Contents [0J0JoJoJoJoJoJoJoJoJoJoJoJo]o]o]

When referring to the entire word, the digit numbered 0 is called the rightmost
digit; the one numbered 3, the leftmost digit.

29

Data Area Structure Section 3-2

When inputting data into data areas, it must be input in the proper form for the
intended purpose. This is no problem when designating individual bits, which
are merely turned ON (equivalent to a binary value of 1) or OFF (a binary value of
0). When inputting word data, however, it is important to input it either as decimal
or as hexadecimal, depending on what is called for by the instruction it is to be
used for. Section 5 Instruction Set specifies when a particular form of data is re-
quired for an instruction.

Converting Different Forms Binary and hexadecimal can be easily converted back and forth because each

of Data four bits of a binary number is numerically equivalent to one digit of a hexadeci-
mal number. The binary number 0101111101011111 is converted to hexadeci-
mal by considering each set of four bits in order from the right. Binary 1111 is
hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal equivalent
would thus be 5F5F, or 24,415 in decimal (163 x5 + 162 x 15 + 16 x 5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each BCD
digit (i.e., each group of four BCD bits) is numerically equivalent of the corre-
sponding decimal digit. The BCD bits 0101011101010111 are converted to deci-
mal by considering each four bits from the right. Binary 0101 is decimal 5; binary
0111 is decimal 7. The decimal equivalent would thus be 5,757. Note that this is
not the same numeric value as the hexadecimal equivalent of
0101011101010111, which would be 5,757 hexadecimal, or 22,359 in decimal
(163x5+162x7 + 16 x5 + 7).

Because the numeric equivalent of each four BCD binary bits must be numeri-
cally equivalent to a decimal value, any four bit combination numerically greater
than 9 cannot be used, e.g., 1011 is not allowed because it is numerically equiva-
lent to 11, which cannot be expressed as a single digit in decimal notation. The
binary bits 1011 are of course allowed in hexadecimal are a equivalent to the
hexadecimal digit C.

There are instructions provided to convert data either direction between BCD
and hexadecimal. Refer to 5-18 Data Conversion for details. Tables of binary
equivalents to hexadecimal and BCD digits are provided in the appendices for
reference.

Decimal Points Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

Signed and Unsigned Binary Data
This section explains signed and unsigned binary data formats. Many instruc-
tions can use either signed or unsigned data and a few (such as CPS(114),
CPSL(115), DBS(485), DBSL(483), MBS(484), and MBSL(482)) use signed
data exclusively.

Unsigned binary Unsigned binary is the standard format used in OMRON PCs. Data in this manu-
al are unsigned unless otherwise stated. Unsigned binary values are always
positive and range from 0 ($0000) to 65,535 ($FFFF). Eight-digit values range
from 0 ($0000 0000) to 4,294,967,295 ($FFFF FFFF).

Digit value 168 162 16 160
I I

Bit number 15 14 13 12 11 10 09 08'07 06 05 O4|03 02 01 00

Contents [o]Jo[of[oJo[o]Jofo|[o]J]o[o]Jof[o|]of[oOfo]

30

Data Area Structure Section 3-2

Signed Binary Signed binary data can have either a positive and negative value. The sign is

Signed Binary

indicated by the status of bit 15. If bit 15 is OFF, the number is positive and if bit 15
is ON, the number is negative. Positive signed binary values range from 0
($0000) to 32,767 ($7FFF), and negative signed binary values range from
—32,768 ($8000) to —1 ($FFFF).

Sign indicator
Digit value _| 168 162 161 160

Bit number 15 14 13 12 11 10 09 08|O7 06 05 O4|03 02 01 00

Contents [o]Jo[of[oJof[o]Jofo|[o]Jo[o]Jof[o|]of[oOf o]

Eight-digit positive values range from 0 ($0000 0000) to 2,147,483,647 ($7FFF
FFFF), and eight-digit negative values range from —2,147,483,648 ($8000
0000) to —1 ($FFFF FFFF).

The following table shows the corresponding decimal, 16-bit hexadecimal, and
32-bit hexadecimal values.

Decimal 16-bit Hex 32-bit Hex
2147483647 —— | 7FFFFFFF
2147483646 — | 7FFFFFFE

32768 — 00008000
32767 7FFF 00007FFF
32766 7FFE 00007FFE
2 0002 00000002

1 0001 00000001

0 0000 00000000

- FFFF | FFFFFFFF

) FFFE | FFFFFFFE

32767 8001 | FFFF8001

-32768 8000 FFFF8000
-32769 —_ | FFFF7FFF
2147483647 — | 80000001
—2147483648 —_— 80000000
Converting Decimal to Positive signed binary data is identical to unsigned binary data (up to 32,767)

and can be converted using BIN(023). The following procedure converts nega-
tive decimal values between —32,768 and —1 to signed binary. In this example
—12345 is converted to CFC7.

31

IR (Internal Relay) Area

Section 3-3

Bit number

Contents

Bit number

Contents

Bit number

Contents

1. First take the absolute value (12345) and convert to unsigned binary:

12 11 10 09 08 07 06 05 04 03 02 01 00

[oJoft1ftfoJoJoJofjoJofJt1fJ1]Jt]Jofofil]

2. Next take the complement:

11 10 09 08 07 06 05 04 03 02 Of OOI

12

L1 fJofoftJtJ1]t1ftftJoJoJoJtft1fo]

3. Finally add one:

11 10 09 08 07 06 05 04 03 02 Of OOI

12

Ltf1fJofoftJtJa]JtftftJoJoJofJtft1]1]

Reverse the procedure to convert negative signed binary data to decimal.

3-3 IR (Internal Relay) Area

I/0 Words

Input Bit Usage

32

The IR area is used both as data to control I/O points, and as work bits to manipu-
late and store data internally. It is accessible both by bit and by word. In the
C200HX/HG/HE PC, the IR area is comprised of words IR 000 to IR 235 (IR
area 1) and IR 300 to IR 511 (IR area 2). Basic instructions have somewhat lon-
ger execution times when they access IR area 2 rather than IR area 1.

Words in the IR area that are used to control I/O points are called I/O words. Bits
in I/0O words are called I/O bits. Bits in the IR area which are not assigned as 1/0
bits can be used as work bits. IR area work bits are reset when power is inter-
rupted or PC operation is stopped.

Area

Range

IR Area 1

I/0O Area 1

IR 000 to IR 029

Group-2 High-density 1/0 Unit Area 1
and B7A Interface Unit Area

IR 030 to IR 049

SYSMAC BUS and CompoBus/D Output
Area

IR 050 to IR 099

Special I/O Unit Area 1

IR100to IR 199

Optical I/0 Unit and I/O Terminal Area

IR 200 to IR 231

Work Area

IR 232 to IR 235

IR Area 2

I/O Area 2

IR 300 to IR 309

Work Area

IR 310 to IR 329

Group-2 High-density 1/0 Unit Area 2

IR 330 to IR 341

Work Area

IR 342 to IR 349

IR 350 to IR 399
IR 400 to IR 459
IR 460 to IR 511

CompoBus/D Input Area
Special I/O Unit Area 2
Work Area

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the Unit
sends an output from the PC, the bit is an output bit. To turn ON an output, the
output bit assigned to it must be turned ON. When an input turns ON, the input bit
assigned to it also turns ON. These facts can be used in the program to access
input status and control output status through 1/O bits.

Input bits can be used to directly input external signals to the PC and can be used
in any order in programming. Each input bit can also be used in as many instruc-
tions as required to achieve effective and proper control. They cannot be used in

IR (Internal Relay) Area Section 3-3

instructions that control bit status, e.g., the OUTPUT, DIFFERENTIATION UP,
and KEEP instructions.

Output Bit Usage Output bits are used to output program execution results and can be used in any
order in programming. Because outputs are refreshed only once during each
cycle (i.e., once each time the program is executed), any output bit can be used
in only one instruction that controls its status, including OUT, KEEP(011),
DIFU(013), DIFD(014) and SFT(010). If an output bit is used in more than one
such instruction, only the status determined by the last instruction will actually be
output from the PC.

See 5-15-1 Shift Register — SFT(010) for an example that uses an output bit in
two ‘bit-control’ instructions.

Word Allocation for Racks I/O words are allocated to the CPU Rack and Expansion I/O Racks by slot posi-
tion. One I/O word is allocated to each slot, as shown in the following table. Since
each slot is allocated only one I/O word, a 3-slot rack uses only the first 3 words,
a 5-slot rack uses only the first 5 words, and an 8-slot rack uses only the first 8
words. Words that are allocated to unused or nonexistent slots are available as

work words.

<« Left side of rack Right side of a 10-slot rack —

Rack Slot 1 Slot2 | Slot3 | Slot4 | Slot5 | Slot6 | Slot7 | Slot8 | Slot9 | Slot10
CPU IR000 |IR001 |IR002 |IR003 |IR004 |IR005 |IR006 |IR007 |IRO08 |IR 009
15t Expansion IR010 |IRO1M1 IR0O12 |IR013 |IR014 |IR015 |IR016 |IR017 |IR018 |IRO019
2nd Expansion IR020 |IR021 |IR022 |IR023 |IR024 |IR025 |IR026 |IR027 |IR028 |IR 029
3" Expansion IR300 |IR301 |IR302 |IR303 |IR304 |IR305 |IR306 |IR307 |IR308 |IR 309

Unused Words Any words allocated to a Unit that does not use them can be used in program-

ming as work words and bits. Units that do not used the words assigned to the
slot they are mounted to include Link Units (e.g., Host Link Units, PC Link Units,
SYSMAC NET Link Units, etc.), Remote I/O Master Units, Special /O Units,
Group-2 High-density 1/0 Units, B7A Interface Units, and Auxiliary Power Sup-

ply Units.
Allocation for Special I/O In most C200HX/HG/HE PCs, up to sixteen Special /0 Units may be mounted in
Units and Slave Racks any slot of the CPU Rack or Expansion 1/O Racks. (A limited number of Special

I/0 Units can be installed in Remote 1/O Slave Racks, too.) Each Special /0O Unit
is allocated ten words based on its unit number (0 to F).

Up to ten Special I/0 Units may be mounted in the C200HE-CPUJ[J-ZE and
C200HG/HX-CPU3[1-ZE/4[J-ZE PCs. Each Unit is allocated ten words based
on its unit number (0 to 9).

Unit number I/O words PC Restrictions
IR100to IR 109 | None

IR110t0 IR 119
IR120to IR 129
IR130to IR 139
IR 140 to IR 149
IR 150 to IR 159
IR 160 to IR 169
IR170to IR 179
IR 180 to IR 189
IR 190 to IR 199

Ol N|ojO|hlW|NM|=|O

33

IR (Internal Relay) Area

Section 3-3

Unit number /0 words PC Restrictions

IR 400 to IR 409 | Not available in C200HE-CPU[J-ZE and
IR4101t0 IR 419 | C200HG/HX-CPU3[J-ZE/4[J-ZE PCs.

IR 420 to IR 429
IR 430 to IR 439
IR 440 to IR 449
IR 450 to IR 459

mMmmoO|w| >

Note I/O words that aren’t allocated to Special I/O Units can be used as work words.

Allocation for Optical I/0
Units and I/O Terminals

Allocation for Remote I/0
Master and Link Units

Bit Allocation for I/0 Units

Bit Allocation for Interrupt
Input Units

34

Up to five Slave Racks may be used, whether one or two Masters are used. IR
area words are allocated to Slave Racks by the unit number on the Unit, as
shown in the following tables.

Unit number I/O words

IR 050 to IR 059
IR 060 to IR 069
IR 070 to IR 079
IR 080 to IR 089
IR 090 to IR 099

AWM =|O

The C500-RT001/002-(P)V1 Remote I/O Slave Rack may be used, but it re-
quires 20 I/0O words, not 10, and therefore occupies the I/0 words allocated to 2
C200H Slave Racks, both the words allocated to the unit number set on the rack
and the words allocated to the following unit number. When using a C200HX/
HG/HE CPU Unit, do not set the unit number on a C500 Slave Rack to 4, be-
cause there is no unit number 5. With the C500 Slave Rack, I/O words are allo-
cated only to installed Units, from left to right, and not to slots as in the C200HX/
HG/HE Racks.

I/0 words between IR 200 and IR 231 are allocated to Optical I/O Units and 1/O
Terminals by unit number. The 1/0O word allocated to each Unit is IR 200+n,
where n is the unit number set on the Unit.

Remote Master 1/0O Units and Host Link Units do not use I/0O words, and the PC
Link Units use the LR area, so words allocated to the slots in which these Units
are mounted are available as work words.

An 1/0O Unit may require anywhere from 8 to 16 bits, depending on the model.
With most I/O Units, any bits not used for input or output are available as work
bits. Transistor Output Units C200H-OD213 and C200H-OD411, as well as Triac
Output Unit C200H-OA221, however, uses bit 08 for the Blown Fuse Flag. Tran-
sistor Output Unit C200H-OD214 uses bits 08 to 11 for the Alarm Flag. Bits 08 to
15 of any word allocated to these Units, therefore, cannot be used as work bits.

The Interrupt Input Unit uses the 8 bits of the first I/O word allocated to its slot in
the CPU Rack. (An Interrupt Input Unit will operate as a normal Input Unit when
installed in an Expansion 1/0O Rack.) The other 24 bits allocated to its slot in the
CPU Rack can be used as work bits.

IR (Internal Relay) Area

Section 3-3

Allocation for Group-2

High-density I/0 Units and

B7 Interface Units

Group-2 High-density 1/0 Units and B7A Interface Units are allocated words be-
tween IR 030 and IR 049 according to I/O number settings made on them and do
not use the words allocated to the slots in which they are mounted. For 32-point
Units, each Unit is allocated two words; for 64-point Units, each Unit is allocated
four words. The words allocated for each I/O number are in the following tables.
Any words or parts of words not used for I/O can be used as work words or bits in
programming.

32-point Units

64-point Units

/O number Words /0 number Words
0 IR 30 to IR 31 0 IR30to IR 33
1 IR32to IR 33 1 IR32t0 IR 35
2 IR34to IR 35 2 IR 34 to IR 37
3 IR 36 to IR 37 3 IR 36 to IR 39
4 IR 38to IR 39 4 IR 38 to IR 41
5 IR 40 to IR 41 5 IR40to IR 43
6 IR421t0 IR 43 6 IR42to IR 45
7 IR44 to IR 45 7 IR 44 to IR 47
8 IR 46 to IR 47 8 IR 46 to IR 49
9 IR48to IR 49 9 Cannot be used.
A IR 330 to IR 331 A IR 330 to IR 333
B IR 332 to IR 333 B IR 332 to IR 335
C IR 334 to IR 335 C IR 334 to IR 337
D IR 336 to IR 337 D IR 336 to IR 339
E IR 338 to IR 339 E IR 338 to IR 341
F IR 340 to IR 341 F Cannot be used.

Note Unit numbers A to F cannot be set when using the following CPU Units:

Note

C200HE-CPU32-ZE, C200HE-CPU42-ZE, C200HG-CPU33-ZE, C200HG-
CPU43-ZE, C200HX-CPU34-ZE, and C200HX-CPU44-ZE. Set unit number 0
to 9 when using these CPU Units.

When setting 1/0 numbers on the High-density I/O Units and B7A Interface
Units, be sure that the settings will not cause the same words to be allocated to
more than one Unit. For example, if I/O number 0 is allocated to a 64-point Unit,
I/O number 1 cannot be used for any Unit in the system.

Group-2 High-density I/O Units and B7A Interface Units are not considered Spe-
cial I/0 Units and do not affect the limit to the number of Special I/O Units allowed
in the System, regardless of the number used.

The words allocated to Group-2 High-density I/O Units correspond to the con-
nectors on the Units as shown in the following table.

Unit Word Connector/row
32-point Units m Row A
m+1 Row B
64-point Units m CN1, row A
m+1 CN1, row B
m+2 CN2, row A
m+3 CN2, row B

1. Group-2 High-density I/O Units and B7A Interface Units cannot be mounted
to Slave Racks.

2. Refer to the Installation Guide for limitations on the number of Special I/O
Units that can be mounted to Slave Racks.

35

SR (Special Relay) Area Section 3-4

3-4 SR (Special Relay) Area

The SR area contains flags and control bits used for monitoring PC operation,
accessing clock pulses, and signalling errors. SR area word addresses range
from 236 through 299; bit addresses, from 23600 through 29915.

The SR areas is divided into two sections. The first section ends at SR 255 and
the second section begins at SR 256. When an SR area word is used as an oper-
and in an instruction, the operand mustn’t cross over this boundary. Basic in-
structions that access bits in the SR Area 2 have longer execution times.

Area Range
SR Area 1 SR 23600 to SR 25507
SR Area 2 SR 25600 to SR 29915

The following table lists the functions of SR area flags and control bits. Most of
these bits are described in more detail following the table. Descriptions are in
order by bit number except that Link System bits are grouped together.

Unless otherwise stated, flags are OFF until the specified condition arises, when
they are turned ON. Restart bits are usually OFF, but when the user turns one
ON then OFF, the specified Link Unit will be restarted. Other control bits are OFF
until set by the user.

Not all SR words and bits are writeable by the user. Be sure to check the function
of a bit or word before attempting to use it in programming.

Word(s) Bit(s) Function
236 00 to 07 | Node loop status output area for operating level 0 of SYSMAC NET Link System
08 to 15 | Node loop status output area for operating level 1 of SYSMAC NET Link System
237 00 to 07 | Completion code output area for operating level 0 following execution of SEND(090) or
RECV(098) for a SYSMAC LINK/SYSMAC NET Link System or CMCR(261) for a PC Card
08 to 15 | Completion code output area for operating level 1 following execution of SEND(090) or
RECV(098) for a SYSMAC LINK/SYSMAC NET Link System or CMCR(261) for a PC Card
238 and 241 | 00to 15 | Data link status output area for operating level 0 of SYSMAC LINK or SYSMAC NET Link
System
242 and 245 |00 to 15 | Data link status output area for operating level 1 of SYSMAC LINK or SYSMAC NET Link
System
246 00to 15 | Not used
247 and 248 | 00 to 07 | PC Link Unit Run Flags for Units 16 through 31 or data link status for operating level 1
08 to 15 | PC Link Unit Error Flags for Units 16 through 31 or data link status for operating level 1
249 and 250 | 00 to 07 | PC Link Unit Run Flags for Units 00 through 15 or data link status for operating level O
08 to 15 | PC Link Unit Error Flags for Units 00 through 15 or data link status for operating level 0
251 00 Remote I/O Error Read Bit
Writeable 01 to 02 | Not used
03 Remote I/O Error Flag
04 to 06 | Slave Rack number and unit number of Remote 1/O Unit, Optical I/O Unit, or I1/0O Terminal
with error
07 Not used
08 to 15 | Master’s unit number and word allocated to Remote 1/0O Unit, Optical I/O Unit, or /O Terminal

with error (Hexadecimal)

36

SR (Special Relay) Area Section 3-4

Word(s) Bit(s) Function
252 00 SEND(090)/RECV(098) Error Flag for operating level 0 of Controller Link/SYSMAC LINK or
SYSMAC NET Link System or CMCR(261) Error Flag for PC Card
01 SEND(090)/RECV(098) Enable Flag for operating level 0 of Controller Link/SYSMAC LINK
or SYSMAC NET Link System or CMCR(261) Enable Flag for PC Card
02 Operating Level 0 Data Link Operating Flag of Controller Link/SYSMAC LINK or SYSMAC
NET Link System
03 SEND(090)/RECV(098) Error Flag for operating level 1 of Controller Link/SYSMAC LINK or
SYSMAC NET Link System or CMCR(261) Error Flag for PC Card
04 SEND(090)/RECV(098) Enable Flag for operating level 1 of Controller Link/SYSMAC LINK
or SYSMAC NET Link System or CMCR(261) Enable Flag for PC Card
05 Operating Level 1 Data Link Operating Flag
06 Rack-mounting Host Link Unit Level 1 Communications Error Flag
07 Rack-mounting Host Link Unit Level 1 Restart Bit
08 Peripheral Port Restart Bit
09 RS-232C Port Restart Bit
10 PC Setup Clear Bit
11 Forced Status Hold Bit
12 Data Retention Control Bit
13 Rack-mounting Host Link Unit Level 0 Restart Bit
14 Not used.
15 Output OFF Bit
253 00 to 07 | FAL number output area (see error information provided elsewhere)
08 Low Battery Flag
09 Cycle Time Error Flag
10 I/O Verification Error Flag
11 Rack-mounting Host Link Unit Level 0 Communications Error Flag
12 Remote I/O Error Flag
13 Always ON Flag
14 Always OFF Flag
15 First Cycle Flag
254 00 1-minute clock pulse bit
01 0.02-second clock pulse bit
02 Negative (N) Flag
03 MTR Execution Flag
04 Overflow Flag (for signed binary calculations)
05 Underflow Flag (for signed binary calculations)
06 Differential Monitor End Flag
07 Step Flag
08 HKY Execution Flag
09 7SEG Execution Flag
10 DSW Execution Flag
11 Interrupt Input Unit Error Flag
12 Reserved for system (not accessible by user)
13 Interrupt Program Error Flag
14 Group-2 Error Flag
15 Special Unit Error Flag (includes Special I/0, PC Link, Host Link, Remote I/0 Master Units)

37

SR (Special Relay) Area Section 3-4
Word(s) Bit(s) Function
255 00 0.1-second clock pulse bit
01 0.2-second clock pulse bit
02 1.0-second clock pulse bit
03 Instruction Execution Error (ER) Flag | These flags are turned OFF when the END(001)
04 Carry (CY) Flag instryction is executed, so th_eir status can’t be
05 Greater Than (GR) Fiag monitored from é Programming Cons.ole. .
05| Equal (EQ) Fla
07 Less Than (LE) Flag
08 to 15 | Reserved for system (used for TR bits)
256 to 261 00 to 15 | Reserved for system
262 00 to 15 | Longest interrupt subroutine (action) execution time (0.1-ms units)
263 00 to 15 | Number of interrupt subroutine (action) with longest execution time. (8000 to 8255)
(Bit 15 is the Interrupt Flag.)
264 00 to 03 | RS-232C Port Error Code
0: No error 1: Parity error
2: Framing error 3: Overrun error
04 RS-232C Port Communications Error
05 RS-232C Port Send Ready Flag
06 RS-232C Port Reception Completed Flag
07 RS-232C Port Reception Overflow Flag
08 to 11 | Peripheral Port Error Code in General /O Mode
0: No error 1: Parity error
2: Framing error 3: Overrun error
12 Peripheral Port Communications Error in General /O Mode
13 Peripheral Port Send Ready Flag in General I/O Mode
14 Peripheral Port Reception Completed Flag in General I/O Mode
15 Peripheral Port Reception Overflow Flag in General I/O Mode
265 00to 15 | NT Link (1:N) Mode
Bits 00 to 07: Communicating with PT Flags for Units 0 to 7
Blts 08 to 15: Registering PT Priority Flags for Units 0 to 7
RS-232C Mode
Blts 00 to 15: RS-232C Port Reception Counter
266 00 to 15 | Peripheral Reception Counter in RS-232C Mode
267 00 to 04 | Reserved for system (not accessible by user)
05 Host Link Level 0 Send Ready Flag
06 to 12 | Reserved for system (not accessible by user)
13 Host Link Level 1 Send Ready Flag
14 to 15 | Reserved for system (not accessible by user)
268 00 to 15 | Communications Board Error Information
269 00 to 07 | Memory Cassette Contents 00: Nothing; 01: UM; 02: IOM
08 to 10 | Memory Cassette Capacity
0: 0 KW (no cassette); 2: 4 or 8 KW; 3: 16 KW; 4: 32 KW
11 to 13 | Reserved for system (not accessible by user)
14 EEPROM Memory Cassette Protected or EPROM Memory Cassette Mounted Flag
15 Memory Cassette Flag

38

Note Do not use IR 256 to IR299 as work words even with CPU Units that do not use

them.

SR (Special Relay) Area Section 3-4

Word(s) Bit(s) Function
270 00 Save UM to Cassette Bit Data transferred when the Bit is turned ON in
PROGRAM mode. Bit will automatically turn OFF.
01 Load UM from Cassette Bit A non-fatal error will occur if these bits are turned
ON in RUN or MONITOR modes.
02 Compare UM to Cassette Bit
03 Comparison Results
0: Contents identical; 1: Contents differ or comparison not possible
04 to 10 | Reserved for system (not accessible by user)
11 Transfer Error Flag: Transferring Data will not be transferred from UM to the Memory
SYSMAC NET data link table on UM | Cassette if an error occurs (except for Board
during active data link. Checksum Error). Detailed information on checksum
12 Transfer Error Flag: Not PROGRAM | €rrors occurring in the Memory Cassette will not be
mode output to SR 272 because the information is not
13 Transfer Error Flag: Read Only needed. Repeat the transmission if SR 27015 is ON.
14 Transfer Error Flag: Insufficient
Capacity or No UM
15 Transfer Error Flag: Board Checksum
Error
271 00 to 07 | Ladder program size stored in Memory Cassette
Ladder-only File: 04: 4 KW; 08: 8 KW; 12: 12 KW; ... (32: 32 KW)
00: No ladder program or a file other than a ladder program has been stored.
08 to 15 | Ladder program size and type in CPU (Specifications are the same as for bits 00 to 07.)
272 00 to 10 | Reserved for system (not accessible by user)
11 Memory Error Flag: PC Setup Checksum Error
12 Memory Error Flag: Ladder Checksum Error
13 Memory Error Flag: Instruction Change Vector Area Checksum Error
14 Memory Error Flag: Memory Cassette Online Disconnection
15 Memory Error Flag: Autoboot Error
273 00 Save |IOM to Cassette Bit Data transferred to Memory Cassette when Bit is
turned ON in PROGRAM mode. An error will be
- produced if turned ON in any other mode. Bit will
01 Load IOM from Cassette Bit automatically turn OFF from a Programming
Console.
02 Set this bit to 0.
03 to 07 | Reserved for system (not accessible by user)
08 to 11 | Contains the EM bank number when the Memory Cassette contains IOM data.
12 Transfer Error Flag: Not PROGRAM | Data will not be transferred from IOM to the Memory
mode Cassette if an error occurs (except for Read Only
13 Transfer Error Flag: Read Only Error).
14 Transfer Error Flag: Insufficient
Capacity or No IOM
15 Always 0.

Note Do not use IR 256 to IR299 as work words even with CPU Units that do not use
them.

39

SR (Special Relay) Area Section 3-4

Word(s) Bit(s) Function
274 00 Special I/0O Unit #0 Restart Flag These flags will turn ON during restart processing.
01 Special /O Unit #1 Restart Flag 'g;iiz flags will not turn ON for Units on Slave
02 Special I/0 Unit #2 Restart Flag '
03 Special I/0O Unit #3 Restart Flag
04 Special I/0O Unit #4 Restart Flag
05 Special I/0O Unit #5 Restart Flag
06 Special I/0O Unit #6 Restart Flag
07 Special I/0O Unit #7 Restart Flag
08 Special I/0O Unit #8 Restart Flag
09 Special I/0O Unit #9 Restart Flag
10 Special I/O Unit #A Restart Flag
11 Special I/O Unit #B Restart Flag
12 Special I/0O Unit #C Restart Flag
13 Special I/0O Unit #D Restart Flag
14 Special I/0O Unit #E Restart Flag
15 Special I/O Unit #F Restart Flag
275 00 PC Setup Error (DM 6600 to DM 6605)
01 PC Setup Error (DM 6613 to DM 6623)
02 PC Setup Error (DM 6645 to DM 6655)
03 Reserved for system (not accessible by user)
04 Changing RS-232C Setup Flag
05to 15 | Reserved for system (not accessible by user)
276 00 to 07 | Minutes (00 to 59) Indicates the current time in BCD.
08 to 15 | Hours (00 to 23)
277 to0 279 00 to 15 | Used for keyboard mapping. See page 454.
280 00 to 15 | Group-2 High-density 1/0 Unit Error Flags for Units O to F
(AR 0205 to AR 0214 also function as Error Flags for Units 0 to 9.)
281 00 to 15 | Special I/0O Unit Restart Bits for Units 0 to F
(Units 0 to 9 can also be restarted with Special I/O Unit Restart Bits AR 0100 to AR 0109.)
 To restart a Special /O Unit, either use for force—set/reset operation to turn the Restart Bit ON
and OFF, or turn OFF the power and then turn it ON again.
Note These bits must be turned OFF by the user or user program. If they are not turned OFF,
they will remain ON even after power is turned OFF and ON.
¢ Follow the same procedure as above for starting PC Link Units.
282 00 to 15 | Special I/O Unit Error Flags for Units 0 to F
(AR 0000 to AR 0009 also function as Error Flags for Units 0 to 9.)
283 to 286 00 to 15 | Communications Board monitoring area
287 to 288 00 to 15 | Communications Board interrupt data area
289 00 to 07 | Communications Board general monitoring area
08 Communications Board Port A Instruction Execution Flag
09 to 10 | Used by Communications Board Port A instructions
11 Communications Board Port A Instruction Abort Bit
12 Communications Board Port B Instruction Execution Flag
13 to 14 | Used by Communications Board Port B instructions
15 Communications Board Port B Instruction Abort Bit
290 to 293 00 to 15 | Macro Area inputs.
294 to 297 00 to 15 | Macro Area outputs.
298 to 299 00 to 15 | Reserved for system (not accessible by user)

40

Note Do not use IR 256 to IR299 as work words even with CPU Units that do not use
them.

SR (Special Relay) Area

Section 3-4

3-4-1 Controller Link/SYSMAC NET/SYSMAC LINK System

SR 236 provides the local node loop status for SYSMAC NET Systems, as
shown below.

Loop Status

- Bit in SR 236
Level 0 07 | 06 05 04 03 02 01 00
Level 1 15 | 14 13 12 11 10 09 08
Status/ 1 1 Central Power Supply |1 Loop Status Reception Status 1
Meaning 0: Connected 11: Normal loop 0: Reception enabled
1: Not connected 10: Downstream backloop 1: Reception disabled
01: Upstream backloop
00: Loop error

Completion Codes

SR 23700 to SR23707 provide the SEND/RECV completion code for operating
level 0 and SR 23708 to SR 23215 provide the SEND/RECV completion code for
operating level 1. The completion codes are as given in the following tables.

Controller Link/SYSMAC LINK

Code ltem Meaning

00 Normal end Processing ended normally.

01 Parameter error Parameters for network communication instruction is
not within acceptable ranges.

02 Unable to send Unit reset during command processing or local node
is not in network.

03 Destination not in Destination node is not in network.

network

04 Busy error The destination node is processing data and cannot
receive the command.

05 Response timeout | The response monitoring time was exceeded.

06 Response error There was an error in the response received from
the destination node.

07 Communications An error occurred in the communications controller.

controller error

08 Setting error There is an error in the node address settings.

09 PC error An error occurred in the CPU Unit of the destination
node.

10 Routing error Routing could not be performed correctly and the
command could not be sent.

11 Relay error An error occurred in the relay node and the
command did not arrive at the remote node.

12 Local node busy The local node is busy so the command could not be
sent.

41

SR (Special Relay) Area

Data Link Status Flags

Section 3-4
SYSMAC NET

Code ltem Meaning

00 Normal end Processing ended normally.

01 Parameter error Parameters for network communication instruction is
not within acceptable ranges.

02 Routing error There is a mistake in the routing tables for
connection to a remote network.

03 Busy error The destination node is processing data and cannot
receive the command.

04 Send error (token The token was not received from the Line Server.

lost)

05 Loop error An error occurred in the communications loop.

06 No response The destination node does not exist or the response
monitoring time was exceeded.

07 Response error There is an error in the response format.

SR 238 to SR 245 contain the data link status for Controller Link/SYSMAC LINK/
SYSMAC NET Systems. The data structure depends on the system used to

create the data link.
Controller Link

¢ Polling Node and Startup Node Addresses

Operating level 0 | Operating level 1 Bit
08 to 15 00 to 07
SR 238 SR 240 Polling node Startup node
address address
Node addresses are expressed in two-digit BCD.
¢ Data Link Status
Operating level 0 | Operating level 1 Bit
08 to 15 00 to 07
SR 239 SR 243 Node 2 Node 1
SR 240 SR 244 Node 4 Node 3
SR 241 SR 245 Node 6 Node 5
SYSMAC LINK
Operating | Operating Bit
level 0 level 1 12t0o15 | 11t008 | 04t007 | 00to03
SR 238 SR 242 Node 4 Node 3 Node 2 Node 1
SR 239 SR 243 Node 8 Node 7 Node 6 Node 5
SR 240 SR 244 Node 12 Node 11 Node 10 Node 9
SR 241 SR 245 Node 16 Node 15 Node 14 Node 13
Leftmost bit Rightmost bit
1: Data link 1: Communica- 1: PC CPU Unit 1: PC RUN status
operating tions error error
SYSMAC NET
Operating | Operating Bit (Node numbers below)
level 0 level1 45 [14 [13 [12 [11 [10 [09 [08 [07 [06 [05 [04 [03 [02 [01 | 00
SR 238 SR 242 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
SR 239 SR 243 16 (15 |14 |13 |12 (11 |10 |9 16 (15 |14 |13 |12 (11 |10 |9
SR 240 SR 244 24 |23 |22 |21 |20 (19 |18 |17 |24 |23 |22 |21 (20 |19 |18 |17
SR 241 SR 245 32 |31 |30 |29 |28 |27 |26 |25 |32 |31 |30 |29 |28 |27 |26 |25

42

1: PC CPU Unit error

1: PC RUN status

SR (Special Relay) Area

Section 3-4

3-4-2 Remote I/0 Systems

SR 25100 - Error Check Bit

SR 25101 and SR 25102
SR 25103

SR 25104 through SR 25115

SR 25312 turns ON to indicate an error has occurred in Remote 1/0 Systems.
The ALM/ERR indicator will flash, but PC operation will continue. SR 251 con-
tains information on the source and type of error and AR 0014 and AR 0015 con-
tain information on the SYSMAC LINK status. The function of each bit is de-
scribed below. Refer to Optical and Wired Remote I/O System Manuals for de-
tails.

If there are errors in more than one Remote 1/0O Unit, word SR 251 will contain
error information for only the first one. Data for the remaining Units will be stored
in memory and can be accessed by turning the Error Check bit ON and OFF. Be
sure to record data for the first error, which will be cleared when data for the next
error is displayed.

Not used.

Remote /O Error Flag: Bit 03 turns ON when an error has occurred in a Remote
I/O Unit.

The content of bits 04 to 06 is a 3-digit binary number (04: 29, 05: 21, 06: 22) and
the content of bits 08 to 15 is a 2-digit hexadecimal number (08 to 11: 160, 12 to
15: 167).

If the content of bits 12 through 15 is B, an error has occurred in a Remote /O
Master or Slave Unit, and the content of bits 08 through 11 will indicate the unit
number, either 0 or 1, of the Master involved. In this case, bits 04 to 06 contain
the unit number of the Slave Rack involved.

If the content of bits 12 through 15 is a number from 0 to 31, an error has oc-
curred in an Optical I/O Unit or /O Terminal. The number is the unit number of the
Optical 1/0 Unit or I1/0 Terminal involved, and bit 04 will be ON if the Unit is as-
signed leftmost word bits (08 through 15), and OFF if it is assigned rightmost
word bits (00 through 07).

3-4-3 Link System Flags and Control Bits

Host Link Systems

Use of the following SR bits depends on the configuration of any Link Systems to
which your PC belongs. These flags and control bits are used when Link Units,
such as PC Link Units, Remote I/O Units, or Host Link Units, are mounted to the
PC Racks or to the CPU Unit. For additional information, consult the System
Manual for the particular Units involved.

The following bits can be employed as work bits when the PC does not belong to
the Link System associated with them.

Both Error flags and Restart bits are provided for Host Link Systems. Error flags
turn ON to indicate errors in Host Link Units. Restart bits are turned ON and then
OFF to restart a Host Link Unit. SR bits used with Host Link Systems are summa-
rized in the following table. Rack-mounting Host Link Unit Restart bits are
not effective for the Multilevel Rack-mounting Host Link Units. Refer to the
Host Link System Manual for details.

Bit Flag
25206 Rack-mounting Host Link Unit Level 1 Error Flag
25207 Rack-mounting Host Link Unit Level 1 Restart Bit
25213 Rack-mounting Host Link Unit Level 0 Restart Bit
25311 Rack-mounting Host Link Unit Level O Error Flag

43

SR (Special Relay) Area

Section 3-4

PC Link Systems

PC Link Unit Error and Run
Flags

Single-level PC Link
Systems

44

When the PC belongs to a PC Link System, words 247 through 250 are used to
monitor the operating status of all PC Link Units connected to the PC Link Sys-
tem. This includes a maximum of 32 PC Link Units. If the PC is in a Multilevel PC
Link System, half of the PC Link Units will be in a PC Link Subsystem in operating
level O; the other half, in a Subsystem in operating level 1. The actual bit assign-
ments depend on whether the PC is in a Single-level PC Link System or a Multi-
level PC Link System. Refer to the PC Link System Manual for details. Error and
Run Flag bit assignments are described below.

Bits 00 through 07 of each word are the Run flags, which are ON when the PC
Link Unit is in RUN mode. Bits 08 through 15 are the Error flags, which are ON
when an error has occurred in the PC Link Unit. The following table shows bit
assignments for Single-level and Multi-level PC Link Systems.

Flag type Bit no. SR 247 SR 248 SR 249 SR 250
Run flags 00 Unit #24 Unit #16 Unit #8 Unit #0
01 Unit #25 Unit #17 Unit #9 Unit #1
02 Unit #26 Unit #18 Unit #10 Unit #2
03 Unit #27 Unit #19 Unit #11 Unit #3
04 Unit #28 Unit #20 Unit #12 Unit #4
05 Unit #29 Unit #21 Unit #13 Unit #5
06 Unit #30 Unit #22 Unit #14 Unit #6
07 Unit #31 Unit #23 Unit #15 Unit #7
Error flags | 08 Unit #24 Unit #16 Unit #8 Unit #0
09 Unit #25 Unit #17 Unit #9 Unit #1
10 Unit #26 Unit #18 Unit #10 Unit #2
11 Unit #27 Unit #19 Unit #11 Unit #3
12 Unit #28 Unit #20 Unit #12 Unit #4
13 Unit #29 Unit #21 Unit #13 Unit #5
14 Unit #30 Unit #22 Unit #14 Unit #6
15 Unit #31 Unit #23 Unit #15 Unit #7

SR (Special Relay) Area

Section 3-4

Multilevel PC Link Systems

Application Example

Flag type Bit no. SR 247 SR 248 SR 249 SR 250
Run flags 00 Unit #8, Unit #0, Unit #8, Unit #0,
level 1 level 1 level 0 level 0
01 Unit #9, Unit #1, Unit #9, Unit #1,
level 1 level 1 level 0 level 0
02 Unit #10, Unit #2, Unit #10, Unit #2,
level 1 level 1 level 0 level 0
03 Unit #11, Unit #3, Unit #11, Unit #3,
level 1 level 1 level 0 level 0
04 Unit #12, Unit #4, Unit #12, Unit #4,
level 1 level 1 level 0 level 0
05 Unit #13, Unit #5, Unit #13, Unit #5,
level 1 level 1 level 0 level 0
06 Unit #14, Unit #6, Unit #14, Unit #6,
level 1 level 1 level 0 level 0
07 Unit #15, Unit #7, Unit #15, Unit #7,
level 1 level 1 level 0 level 0
Error flags | 08 Unit #8, Unit #0, Unit #8, Unit #0,
level 1 level 1 level 0 level 0
09 Unit #9, Unit #1, Unit #9, Unit #1,
level 1 level 1 level 0 level 0
10 Unit #10, Unit #2, Unit #10, Unit #2,
level 1 level 1 level 0 level 0
11 Unit #11, Unit #3, Unit #11, Unit #3,
level 1 level 1 level 0 level 0
12 Unit #12, Unit #4, Unit #12, Unit #4,
level 1 level 1 level 0 level 0
13 Unit #13, Unit #5, Unit #13, Unit #5,
level 1 level 1 level 0 level 0
14 Unit #14, Unit #6, Unit #14, Unit #6,
level 1 level 1 level 0 level 0
15 Unit #15, Unit #7, Unit #15, Unit #7,
level 1 level 1 level 0 level 0

If the PC is in a Multilevel PC Link System and the content of word 248 is 02FF,
then PC Link Units #0 through #7 of in the PC Link Subsystem assigned operat-
ing level 1 would be in RUN mode, and PC Link Unit #1 in the same Subsystem
would have an error. The hexadecimal digits and corresponding binary bits of
word 248 would be as shown below.

Bit no. L= 00
Binary 0000 0010 1111 1111
Hex 0 2 F =

3-4-4 Forced Status Hold Bit

SR 25211 determines whether or not the status of bits that have been force-set
or force-reset is maintained when switching between PROGRAM and MONI-
TOR mode to start or stop operation. If SR 25211 is ON, bit status will be main-
tained; if SR 25211 is OFF, all bits will return to default status when operation is
started or stopped. The Forced Status Hold Bit is only effective when enabled in
the PC Setup.

The status of SR 25211 in not affected by a power interruption unless the 1/0
table is registered; in that case, SR 25211 will go OFF.

SR 25211 is not effective when switching to RUN mode.

SR 25211 should be manipulated from a Programming Device, e.g., a Program-
ming Console or SYSMAC-CPT Support Software.

45

SR (Special Relay) Area Section 3-4

Maintaining Status during The status of SR 25211 and thus the status of force-set and force-reset bits can

Startup be maintained when power is turned OFF and ON by enabling the Forced Status
Hold Bit in the PC Setup. If the Forced Status Hold Bit is enabled, the status of
SR 25211 will be preserved when power is turned OFF and ON. If this is done
and SR 25211 is ON, then the status of force-set and force-reset bits will also be
preserved, as shown in the following table.

Status before shutdown Status at next startup
SR 25211 SR 25211 Force-set/reset bits
ON ON Status maintained
OFF OFF Reset

Note Referto 3-6-5 PC Setup for details on enabling the Forced Status Hold Bit.
3-4-5 1/O Status Hold Bit

SR 25212 determines whether or not the status of IR and LR area bits is main-
tained when operation is started or stopped. If SR 25212 is ON, bit status will be
maintained; if SR 25212 is OFF, all IR and LR area bits will be reset. The I/O Sta-
tus Hold Bit is effective only if enabled in the PC Setup.

The status of SR 25212 in not affected by a power interruption unless the 1/0
table is registered; in that case, SR 25212 will go OFF.

SR 25212 should be manipulated from a Programming Device, e.g., a Program-
ming Console or SYSMAC-CPT Support Software.

Maintaining Status during The status of SR 25212 and thus the status of IR and LR area bits can be main-

Startup tained when power is turned OFF and ON by enabling the I/O Status Hold Bit in
the PC Setup. If the I/O Status Hold Bit is enabled, the status of SR 25212 will be
preserved when power is turned OFF and ON. If this is done and SR 25212 is
ON, then the status of IR and LR area bits will also be preserved, as shown in the
following table.

Status before shutdown Status at next startup
SR 25212 SR 25212 IR and LR bits
ON ON Status maintained
OFF OFF Reset

Note Referto 3-6-5 PC Setup for details on enabling the 1/O Status Hold Bit.

3-4-6 Output OFF Bit

SR bit 25215 is turned ON to turn OFF all outputs from the PC. The OUT INHIBIT
indicator on the front panel of the CPU Unit will light. When the Output OFF Bit is
OFF, all output bits will be refreshed in the usual way.

The status of the Output OFF Bit is maintained for power interruptions or when
PC operation is stopped, unless the I/O table has been registered, or the 1/0
table has been registered and either the Forced Status Hold Bit or the 1/O Status
Hold Bit has not been enabled in the PC Setup.

3-4-7 FAL (Failure Alarm) Area

A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or FALS
instruction is executed. These codes are user defined for use in error diagnosis,
although the PC also outputs FAL codes to these bits, such as one caused by
battery voltage drop.

This area can be reset by executing the FAL instruction with an operand of 00 or
by performing a Failure Read Operation from the Programming Console.

3-4-8 Low Battery Flag

SR bit 25308 turns ON if the voltage of the CPU Unit’s backup battery drops. The
ALM/ERR indicator on the front of the CPU Unit will also flash.

46

SR (Special Relay) Area Section 3-4

This bit can be programmed to activate an external warning for a low battery volt-
age.

The operation of the battery alarm can be disabled in the PC Setup if desired.
Refer to 3-6-5 PC Setup for details.

3-4-9 Cycle Time Error Flag

SR bit 25309 turns ON if the cycle time exceeds 100 ms. The ALM/ERR indicator
on the front of the CPU Unit will also flash. Program execution will not stop, how-
ever, unless the maximum time limit set for the watchdog timer is exceeded. Tim-
ing may become inaccurate after the cycle time exceeds 100 ms.

3-4-101/0 Verification Error Flag

SR bit 25310 turns ON when the Units mounted in the system disagree with the
I/O table registered in the CPU Unit. The ALM/ERR indicator on the front of the
CPU Unit will also flash, but PC operation will continue.
To ensure proper operation, PC operation should be stopped, Units checked,
and the 1/O table corrected whenever this flag goes ON.

3-4-11 First Cycle Flag

SR bit 25315 turns ON when PC operation begins and then turns OFF after one
cycle of the program. The First Cycle Flag is useful in initializing counter values
and other operations. An example of this is provided in 5-14 Timer and Counter
Instructions.

3-4-12 Clock Pulse Bits

Five clock pulses are available to control program timing. Each clock pulse bit is
ON for the first half of the rated pulse time, then OFF for the second half. In other
words, each clock pulse has a duty factor of 50%.

These clock pulse bits are often used with counter instructions to create timers.
Refer to 5-14 Timer and Counter Instructions for an example of this.

Pulse width 1 min 0.02s 0.1s 0.2s 1.0s
Bit 25400 25401 25500 25501 25502
Bit 25400 Bit 25401
1-min clock pulse 0.02-s clock pulse
~—3OS—~—303—~ ~— 01s—~.~— 01s—~
])]])]
e min,—— : 02s !
Bit 25500 Bit 25501
0.1-s clock pulse 0.2-s clock pulse
~—053—~— 053—~ ~—O1s—~.~—01s—~
])]])]
~—— 015 — : 02s '
Bit 25502 Note:
1.0-s clock pulse ote:

Because the 0.1-second and
-_- 0.02-second clock pulse bits have
e 05 s—s'e 0.55—! ON times of 50 and 10 ms, respec-
X ! ! tively, the CPU Unit may not be
\ 10s ' able to accurately read the pulses
' ! if program execution time is too
long.

|

47

SR (Special Relay) Area

Section 3-4

3-4-13 Step Flag

SR bit 25407 turns ON for one cycle when step execution is started with the
STEP(008) instruction.

3-4-14 Group-2 Error Flag

SR bit 25414 turns ON for any of the following errors for Group-2 High-density
I/0O Units and B7A Interface Units: the same I/O number set twice, the same
words allocated to more than one Unit, refresh errors. If one of these errors oc-
curs, the Unit will stop operation and the ALARM indicator will flash, but the over-
all PC will continue operation.

When the Group-2 Error Flag is ON, the number of the Unit with the error will be
provided in AR 0205 to AR 0214. If the Unit cannot be started properly even
though the 1/0 number is set correctly and the Unit is installed properly, a fuse
may be blown or the Unit may contain a hardware failure. If this should occur,
replace the Unit with a spare and try to start the system again.

There is also an error flag for High-density I/0O Units and B7A Interface Units in
the AR area, AR 0215.

3-4-15 Special Unit Error Flag

SR bit 25415 turns ON to indicate errors in the following Units: Special I/0, PC

Link, Host Link, and Remote I/O Master Units. SR bit 25415 will turn ON for any

of the following errors.

¢ When more than one Special I/0O Unit is set to the same unit number.

* When an error occurs in refreshing data between a Special I/O Unit and the
PC’s CPU Unit.

* When an error occurs between a Host Link Unit and the PC’s CPU Unit.

¢ When an error occurs in a Remote I/O Master Unit.

Although the PC will continue operation if SR 25415 turns ON, the Units causing

the error will stop operation and the ALM indicator will flash. Check the status of

AR 0000 to AR 0015 to obtain the unit numbers of the Units for which the error

occurred and investigate the cause of the error.

Unit operation can be restarted by using the Restart Bits (AR 0100 to AR 0115,

SR 25207, and SR 25213), but will not be effective if the same unit number is set

for more than one Special I/O Unit. Turn OFF the power supply, correct the unit

number settings, and turn ON the power supply again to restart.

SR 25415 will not turn OFF even if AR 0100 to AR 0115 (Restart Bits) are turned

ON. It can be turned OFF by reading errors from a Programming Device or by

executing FAL(006) 00 from the ladder program.

3-4-16 Instruction Execution Error Flag, ER

SR bit 25503 turns ON if an attempt is made to execute an instruction with incor-
rect operand data. Common causes of an instruction error are non-BCD oper-
and data when BCD data is required, or an indirectly addressed DM word that is
non-existent. When the ER Flag is ON, the current instruction will not be
executed.

3-4-17 Arithmetic Flags

48

Note

The following flags are used in data shifting, arithmetic calculation, and compari-
son instructions. They are generally referred to only by their two-letter abbrevia-
tions.

These flags are all reset when the END(001) instruction is executed, and there-
fore cannot be monitored from a programming device.

Refer to 5-15 Data Shifting, 5-17 Data Comparison, 5-20 BCD Calculations, and
5-21 Binary Calculations for details.

SR (Special Relay) Area

Section 3-4

Negative Flag, N
Overflow Flag, OF

Underflow Flag, UF

Carry Flag, CY

Greater Than Flag, GR

Equal Flag, EQ

Less Than Flag, LE

SR bit 25402 turns ON when the result of a calculation is negative.

SR bit 25404 turns ON when the result of a binary addition or subtraction ex-
ceeds 7FFF or 7FFFFFFF.

SR bit 25405 turns ON when the result of a signed binary addition or subtraction
exceeds 8000 or 80000000.

SR bit 25504 turns ON when there is a carry in the result of an arithmetic opera-
tion or when a rotate or shift instruction moves a “1” into CY. The content of CY is
also used in some arithmetic operations, e.g., it is added or subtracted along
with other operands. This flag can be set and cleared from the program using the
Set Carry and Clear Carry instructions.

SR bit 25505 turns ON when the result of a comparison shows the first of two
operands to be greater than the second.

SR bit 25506 turns ON when the result of a comparison shows two operands to
be equal or when the result of an arithmetic operation is zero.

SR bit 25507 turns ON when the result of a comparison shows the first of two
operands to be less than the second.

Note The four arithmetic flags are turned OFF when END(001) is executed.

3-4-18 Interrupt Subroutine Areas

Interrupt Subroutine
Maximum Processing Time
Area

Maximum Processing Time
Interrupt Subroutine
Number Area

The following areas are used in subroutine interrupt processing.

SR bits 26200 to 26215 are used to set the maximum processing time of the in-
terrupt subroutine. Processing times are determined to within 0.1 ms incre-
ments.

SR bits 26300 to 26315 contain the maximum processing time interrupt subrou-
tine number. Bit 15 will be ON if there is an interruption.

3-4-19 RS-232C Port Communications Areas

RS-232C Port Error Code

RS-232C Port
Communication Error Bit

RS-232C Port Send Ready
Flag

RS-232C Port Reception
Completed Flag

RS-232C Port Reception
Overflow Flag

RS-232C Reception Counter

SR bits 26400 to 26403 contain the error code when an RS-232C port error oc-
curred.

Error Error type Error conditions Valid modes
code
0 No error All modes
1 Parity error Received data had a different All modes
positive/negative polarity setting.
2 Framing error | Step bit could not be detected. All modes
3 Overrun error | Data was not received properly. All modes
4 Timeout error | A timeout occurred between two 1:1 PC Link Slave or
PCs that are linked one-to-one. 1:1 PC Link Master

SR bit 26404 turns ON when there is a RS-232C port communication error.
SR bit 26405 turns ON when the PC is ready to transmit data.

SR bit 26406 turns ON when the PC has completed reading data from a
RS-232C device.

SR bit 26407 turns ON when data overflow occurs following the reception of
data.

SR 26500 to SR 26515 contains the number of RS-232C port receptions in Gen-
eral /0O Mode.

49

SR (Special Relay) Area

Section 3-4

Host Link Level 0 Send
Ready Flag

Host Link Level 1 Send
Ready Flag

SR bit 26705 turns ON when the PC is ready to transmit to the Host Link Unit.

SR bit 26713 turns ON when the PC is ready to transmit to the Host Link.

3-4-20 Peripheral Port Communications Areas

Peripheral Port Error Code

Peripheral Port
Communication Error Bit

Peripheral Port Send Ready
Flag

Peripheral Port Reception
Completed Flag

Peripheral Port Reception
Overflow Flag

Peripheral Reception
Counter

Host Link Level 0 Send
Ready Flag

Host Link Level 1 Receive
Ready Flag

SR bits 26408 to 26411 contain the error code when a peripheral port error oc-
curred.

Error Error type Error conditions Valid modes
code
0 No error All modes
1 Parity error Received data had a different All modes
positive/negative polarity setting.
2 Framing error | Step bit could not be detected. All modes
3 Overrun error | Data was not received properly. All modes
4 Timeout error | A timeout occurred between two 1:1 PC Link Slave or
PCs that are linked one-to-one. 1:1 PC Link Master

SR bit 26412 turns ON when there is a peripheral port communication error (ef-
fective in General I/0 Mode).

SR bit 26413 turns ON when the PC is ready to transmit data in General 1/0
Mode.

SR bit 26414 turns ON when the PC has completed reading data from a Pro-
gramming Device. Effective in General I/0O Mode.

SR bit 26415 turns ON when data overflow occurs following the reception of
data. Effective in General I/O Mode.

SR 26600 to SR 26615 contains the number of peripheral port receptions in
General /0 Mode (BCD).

SR bit 26705 turns ON when the PC is ready to transmit to the Host Link Unit.

SR bit 26713 turns ON when the PC is ready to receive data from the Host Link.

3-4-21 Memory Cassette Areas

Memory Cassette Contents

Memory Cassette Capacity

EEPROM/EPROM Memory
Cassette Mounted Flag

50

SR 26900 to SR 26907 indicate the type of memory used for the Memory Cas-
sette.

Memory Type Code
Nothing 00
UM 01
IOM 02
HIS 03

SR 26908 to SR 26910 indicate the memory capacity of the Memory Cassette.

Capacity Code
0 KW (no board mounted) 0
4 KW/8 KW 2
16 KW 3
32 KW 4

SR bit 26914 turns ON when EEPROM Memory Cassette is protected or
EPROM Memory Cassette is mounted.

SR (Special Relay) Area

Section 3-4

Memory Cassette Flag

Save UM to Cassette Flag

Load UM from Cassette
Flag

Collation (Between DM and
Memory Cassette)

SR bit 26915 turns ON when a Memory Cassette is mounted.

SR bit 27000 turns ON when UM data is read to a Memory Cassette in Program
Mode. Bit will automatically turn OFF. An error will be produced if turned ON in
any other mode.

SR bit 27001 turns ON when data is loaded into UM from a Memory Cassette in
Program Mode. Bit will automatically turn OFF. An error will be produced if
turned ON in any other mode.

SR bit 27002 turns ON when data has been compared between DM and a
Memory Cassette. SR bit 27003 is turned OFF if the data in the Memory Cas-
sette matches and it is turned ON if the data does not match.

3-4-22 Data Transfer Error Bits

Transfer Error Flag:
Active Data Link

Transfer Error Flag:
Not PROGRAM Mode

Transfer Error Flag:
Read Only

Transfer Error Flag:
Insufficient Capacity or No
UM

Transfer Error Flag: Board
Checksum Error

Data will not be transferred from UM to the Memory Cassette if an error occurs
(except for Board Checksum Error). Detailed information on checksum errors
occurring in the Memory Cassette will not be output to SR 272 because the in-
formation is not needed. Repeat the transmission if SR 27015 is ON.

SR bit 27011 turns ON when an attempt is made to transfer the UM used for the
SYSMAC NET data link table while the data link is active.

SR bit 27012 turns ON when the PC is not in Program Mode and data transfer is
attempted.

SR bit 27013 turns ON when the PC is in Read-only Mode and data transfer is
attempted.

SR bit 27014 turns ON when data transfer is attempted and available UM is in-
sufficient.

SR bit 27015 turns ON when data transfer is attempted and a Board Checksum
error occurs.

3-4-23 Ladder Diagram Memory Areas

Memory Cassette Ladder
Diagram Size Area

CPU Unit Ladder Diagram
Size and Type

SR 27100 to SR 27107 indicate the amount of ladder program stored in a
Memory Cassette. Ladder-only Files:

04: 4 KW; 08: 8 KW; 12: 12 KW; ... (32: 32 KW)
00:Memory Cassette contents not UM or there is no file.

SR 27108 to SR 27115 indicate the CPU Unit’s ladder program size and type.
Specifications are the same as for bits 00 to 07.

3-4-24 Memory Error Flags

Memory Error Flag: PC
Setup Error

Memory Error Flag: Ladder
Checksum Error

Memory Error Flag:
Instruction Change Error

Memory Error Flag: Memory
Cassette Disconnect Error

SR bit 27211 turns ON when a PC Setup Checksum error occurs.

SR bit 27212 turns ON when a Ladder Checksum error occurs.

SR bit 27213 turns ON when an instruction change vector area error occurs.

SR bit 27214 turns ON when a Memory Cassette is connected or disconnected
during operations.

51

AR (Auxiliary Relay) Area Section 3-5

Memory Error Flag: SR bit 27215 turns ON when an autoboot error occurs.
Autoboot Error

3-4-25 Data Save/Load Bits

Data transferred to/from Memory Cassette when Bit is turned ON in PROGRAM
mode. Bit will automatically turn OFF when manipulated from a Programming
Console. An error will be produced if turned ON in any other mode.

Save IOM to Cassette Bit Turn ON SR bit 27300 to save IOM data to a Memory Cassette.
Load IOM from Cassette Bit Turn ON SR bit 27301 to loading IOM data from a Memory Cassette.

3-4-26 Transfer Error Flags

Data will not be transferred from IOM to the Memory Cassette if an error occurs
(except for Read Only Error).

Transfer Error Flag: Not SR bit 27312 turns ON when attempting to transfer data in other than Program

PROGRAM mode Mode.

Transfer Error Flag SR bit 27313 turns ON when attempting to transfer data in Read-only Mode.

Transfer Error Flag SR bit 27314 turns ON when attempting to transfer data and IOM capacity is in-
sufficient.

3-4-27 PC Setup Error Flags

PC Setup Startup Error SR bit 27500 turns ON when a PC Setup Startup error occurs (DM6600 to
DM6605).

PC Setup RUN Error SR bit 27501 turns ON when a PC Setup Run error occurs (DM6613 to
DM6623).

PC Setup SR bit 27502 turns ON when a PC Setup Communications, Error setting or Mis-

Communications/Error cellaneous error occurs (DM6635 to DM6655).

Setting/Misc. Error

3-4-28 Clock and Keyboard Mapping

Clock (SR 276) SR 276 contains the current time. SR bits 27600 to 27607 contain the minutes
(00 to 59) and SR bits 27608 to 27615 contain the hours (0 to 23).

Keyboard Mapping (SR 277) SR 277 through SR 279 are used for keyboard mapping.

3-4-29 Group-2 Error Flags

SR bits 28000 to SR 28015 are used as Error Flags for Group-2 High-density 1/0
Units with unit numbers 0 to F. The corresponding Error Flag is turned ON when
an error occurs in that Unit. Ten bits in the AR area (AR 0205 to AR 0214) are also
used as Error Flags for Units 0 to 9.

3-4-30 Special I/0 Unit Restart Bits and Error Flags

SR bits 28100 to SR 28115 are used as Restart Bits for Special I/O Units with unit
numbers 0 to F. Turn the corresponding bit ON and OFF to restart a Special 1/0
Unit. Ten bits in the AR area (AR 0100 to AR 0109) are also used as Restart Bits
for Units 0 to 9.

SR bits 28200 to SR 28215 are used as Error Flags for Special I/O Units with unit
numbers 0 to F. The corresponding Error Flag is turned ON when an error occurs
in that Unit. Ten bits in the AR area (AR 0000 to AR 0009) are also used as Error
Flags for Units 0 to 9.

3-5 AR (Auxiliary Relay) Area

AR word addresses extend from AR 00 to AR 27; AR bit addresses extend from
AR 0000 to AR 2715. Most AR area words and bits are dedicated to specific

52

AR (Auxiliary Relay) Area Section 3-5

uses, such as transmission counters, flags, and control bits, and words AR 00
through AR 07 and AR 23 through AR 27 cannot be used for any other purpose.
Words and bits from AR 08 to AR 17 are available as work words and work bits if
not used for the following assigned purposes.

Word Use
AR 08 to AR 15 Controller Link/SYSMAC LINK Units
AR 16, AR 17 Controller Link/SYSMAC LINK and SYSMAC NET Link
Units

The AR area retains status during power interruptions, when switching from
MONITOR or RUN mode to PROGRAM mode, or when PC operation is
stopped. Bit allocations are shown in the following table and described in the fol-
lowing pages in order of bit number.

AR Area Flags and Control Bits

Word(s) Bit(s) Function
00 00 to 09 Error Flags for Special 1/0 Units 0 to 9 and PC Link Units 0 to 9
(The function of these flags is duplicated in SR 28200 through SR 28209.)
10 Error Flag for operating level 1 of Controller Link/SYSMAC LINK or SYSMAC NET Link
System
11 Error Flag for operating level 0 of Controller Link/SYSMAC LINK or SYSMAC NET Link
System
12 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag
13 Host Computer to Rack-mounting Host Link Unit Level O Error Flag
14 Remote I/O Master Unit 1 Error Flag
15 Remote I/O Master Unit 0 Error Flag
01 00 to 09 Restart Bits for Special I/0 Units 0 to 9 and PC Link Units 0 to 9
(The operation of these bits is duplicated in SR 28100 through SR 28109.)
10 Restart Bit for operating level 1 of Controller Link/SYSMAC LINK or SYSMAC NET Link
System
11 Restart Bit for operating level 0 of Controller Link/SYSMAC LINK or SYSMAC NET Link
System
12,13 Not used.
14 Remote I/O Master Unit 1 Restart Bit
15 Remote I/O Master Unit 0 Restart Bit
02 00 to 04 Slave Rack Error Flags (#0 to #4)
05to 14 Group-2 Error Flags (Bits 05 through 14 correspond to Units 0 to 9.)
15 Group-2 Error Flag
03 00to 15 Error Flags for Optical I/O Units and I/O Terminals 0 to 7
04 00to 15 Error Flags for Optical I/O Units and 1/0O Terminals 8 to 15
05 00to 15 Error Flags for Optical I/O Units and 1/0O Terminals 16 to 23
06 00to 15 Error Flags for Optical I/0O Units and 1/0O Terminals 24 to 31
07 00 to 03 Data Link setting for operating level 0 of SYSMAC LINK System
04 to 07 Data Link setting for operating level 1 of SYSMAC LINK System
08 TERMINAL Mode Input Cancel Bit
09 Expansion TERMINAL Mode ON/OFF Bit
10to 11 Not used.
12 Same as status of pin 6 on CPU Unit’s DIP switch
13 Error History Overwrite Bit
14 Error History Reset Bit
15 Error History Enable Bit
08 to 11 00to 15 Active Node Flags for Controller Link/SYSMAC LINK System nodes of operating level 0
12to0 15 00to 15 Active Node Flags for Controller Link/SYSMAC LINK System nodes of operating level 1
16 00to 15 Controller Link/SYSMAC LINK/SYSMAC NET Link System operating level O service time per
cycle

53

AR (Auxiliary Relay) Area Section 3-5

Word(s) Bit(s) Function
17 00to 15 Cor|1troller Link/SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per
cycle
18 00 to 07 Seconds: 00 to 59
08to 15 Minutes: 00 to 59
19 00 to 07 Hours: 00 to 23 (24-hour system)
08to 15 Day of Month: 01 to 31 (adjusted by month and for leap year)
20 00 to 07 Month: 1 to 12
08to 15 Year: 00 to 99 (Rightmost two digits of year)
21 00 to 07 Day of Week: 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:
Thursday; 05: Friday; 06: Saturday)
08 to 12 Not used.
13 30-second Compensation Bit
14 Clock Stop Bit
15 Clock Set Bit
22 00to 15 Keyboard Mapping
23 00to 15 Power Off Counter (BCD)
24 00 SYSMAC LINK — RS-232C Programming Device Flag
01 SYSMAC LINK — Port A Programming Device Flag
02 SYSMAC LINK — Port B Programming Device Flag
03 SYSMAC LINK — Programming Device Initialization BIt
04 Not used.
05 Cycle Time Flag
06 Controller Link/SYSMAC LINK System Network Parameter Flag for operating level 1
07 Controller Link/SYSMAC LINK System Network Parameter Flag for operating level 0
08 Controller Link/SYSMAC LINK/SYSMAC NET Link Unit Level 1 Mounted Flag
09 Controller Link/SYSMAC LINK/SYSMAC NET Link Unit Level 0 Mounted Flag
10 Not used.
11 PC Link Unit Level 1 Mounted Flag
12 PC Link Unit Level 0 or Single Level Mounted Flag
13 Rack-mounting Host Link Unit Level 1 Mounted Flag
14 Rack-mounting Host Link Unit Level 0 Mounted Flag
15 CPU Unit-mounting Device Mounted Flag
25 00 to 07 Password for access to the Online Edit Disable Bit
(The Online Edit Disable Bit is valid when this byte contains 5A.)
08 FPD(269) Trigger Bit
09 Online Edit Disable Bit
10 Online Edit Standby Flag
11 Not used.
12 Trace End Flag
13 Tracing Flag
14 Trace Trigger Bit (writeable)
15 Trace Start Bit (writeable)
26 00to 15 Maximum Cycle Time (0.1-ms units)
27 00to 15 Present Cycle Time (0.1-ms units)

3-5-1 Restarting Special I/O Units

54

AR bits 0100 to AR 0109 correspond to the unit numbers of Special I/0O Units 0 to
9. To restart Special I/0 Units (including PC Link Units) turn the corresponding
bit ON and OFF (or turn power ON and OFF). Do not access data refreshed for
Special I/0O Units during restart processing (see SR 27400 to SR 27409 on page
40).

AR (Auxiliary Relay) Area

Section 3-5

Note

Bits SR 28100 to SR 28115 also act as Restart Bits for Special /0O Units 0 to F.

3-5-2 Slave Rack Error Flags

AR bits 0200 to AR 0204 correspond to the unit numbers of Remote 1/O Slave
Units #0 to #4. These flags will turn ON if the same number is allocated to more
then one Slave or if a transmission error occurs when starting the System. Refer
to SR 251 for errors that occur after the System has started normally.

3-5-3 Group-2 Error Flags

Note

Bits AR 0205 to AR 0215 correspond to Group-2 High-density I/O Units and B7A
Interface Units 0 to 9 (I/O numbers) and will turn ON when the same number is
set for more than one Unit, when the same word is allocated to more than one
Unit, when I/O number 9 is set for a 64-point Unit, or when the fuse burns out in a
Transistor High-density I/O Unit. AR bit 0215 will turn ON when a Unit is not rec-
ognized as a Group-2 High-density /O Unit.

Bits SR 28000 to SR 28015 also act as Error Flags for Group-2 High-density 1/0
Units with unit numbers 0 to F.

3-5-4 Optical I/0 Unit and I/O Terminal Error Flags

Optical I/0O Unit and I/O
Terminal Error Flags

AR 083 through AR 06 contain the Error Flags for Optical I/O Units and I/O Termi-
nals. An error indicates a duplication of a unit number. Up to 64 Optical I/O Units
and I/0O Terminals can be connected to the PC. Units are distinguished by unit
number, 0 through 31, and a letter, L or H. Bits are allocated as shown in the fol-
lowing table.

Bits ARO3 ARO4 ARO5 ARO06
allocation | allocation | allocation | allocation
00 oL 8L 16 L 24 L
01 OH 8H 16 H 24 H
02 1L 9L 17L 25L
03 1H 9H 17H 25H
04 2L 0L 18L 26 L
05 2H 10H 18 H 26 H
06 3L 1L 19L 27L
07 3H 11H 19H 27 H
08 4L 12L 20L 28 L
09 4H 12H 20 H 28 H
10 5L 13L 21L 29L
11 5H 13H 21H 29H
12 6L 14 L 22L 30L
13 6 H 14 H 22H 30H
14 7L 15L 23L 31L
15 7H 15H 23 H 31H

55

AR (Auxiliary Relay) Area

Section 3-5

3-5-5 SYSMAC LINK System Data Link Settings

Words per Node

AR 0700 to AR 0703 and AR 0704 to AR 0707 are used to designate word alloca-
tions for operating levels 0 and 1 of the SYSMAC LINK System. Allocation can
be set to occur either according to settings from the SYSMAC-CPT Support
Software or automatically in the LR and/or DM areas. If automatic allocation is
designated, the number of words to be allocated to each node is also desig-
nated. These settings are shown below.

Operating level 0 Operating level 1 Setting
AR 0700 | AR0701 | AR0704 | AR 0705
0 0 0 0 Words set externally
(SYSMAC-CPT Support Software)
1 0 1 0 Automatic LR area only
0 1 0 1 allocation DM area only
1 1 1 1 LR and DM areas

The following setting is necessary if automatic allocation is designated above.

Operating level 0 Operating level 1 Words per node Max. no.
AR 0702 | AR 0703 | AR 0706 | AR 0707 | LRarea | DMarea | ©fN0des
0 0 0 0 4 8 16
1 0 1 0 8 16 8
0 1 0 1 16 32 4
1 1 1 1 32 64 2

The above settings are read every cycle while the SYSMAC LINK System is in
operation.

3-5-6 Controller Link System Data Link Start Bit

The following words are used to start and stop data links when a Controller Link
Unit is used.

Operating level 0 Operating level 1 Meaning
Data Link Start Bit Data Link Start Bit
AR 0700 AR 0704
Oto1 Data link is started.
or 1 when power is ON
1t00 Data link is stopped.

3-5-7 Error History Bits

56

AR 0713 (Error History Overwrite Bit) is turned ON or OFF by the user to control
overwriting of records in the Error History Area in the DM area. Turn AR 0713 ON
to overwrite the oldest error record each time an error occurs after 10 have been
recorded. Turn OFF AR 07183 to store only the first 10 records that occur each
time after the history area is cleared.

AR 0714 (Error History Reset Bit) is turned ON and then OFF by the user to reset
the Error Record Pointer (DM 6000) and thus restart recording error records at
the beginning of the history area.

AR 0715 (Error History Enable Bit) is turned ON by the user to enable error histo-
ry storage and turned OFF to disable error history storage.

Refer to 3-6 DM Area for details on the Error History Area.
Error history bits are refreshed each cycle.

AR (Auxiliary Relay) Area

Section 3-5

3-5-8 Active Node Flags

AR 08 through AR 11 and AR 12 through AR 15 provide flags that indicate which
nodes are active in the Controller Link/SYSMAC LINK System at the current
time. These flags are refreshed every cycle while the Controller Link/SYSMAC
LINK System is operating.

The body of the following table show the node number assigned to each bit. If the
bit is ON, the node is currently active.

Level 0 Level 1 Bit (body of table shows node numbers)
00 |01 |02 |03 |04 |05 |06 O7 |08 |09 |10 |11 |12 |13 | 14 | 15
AR 08 AR 12 1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15 |16
AR 09 AR 13 17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32
AR 10 AR 14 33 |34 |35 |36 |37 |38 |39 |40 |41 |42 |43 |44 |45 |46 |47 |48
AR 11 AR 15 49 |50 |51 |52 |53 |54 |55 |56 |57 |58 |59 |60 |61 |62 |* **

*Communication Controller Error Flag
**EEPROM Error Flag

3-5-9 Controller Link/SYSMAC LINK/SYSMAC NET Link System Service

Time

AR 16 provides the time allocated to servicing operating level 0 of the Controller
LInk/SYSMAC LINK System and/or SYSMAC NET Link System during each
cycle when a Controller Link/SYSMAC LINK Unit and/or SYSMAC NET Link
Unit is mounted to a Rack.

AR 17 provides the time allocated to servicing operating level 1 of the Controller
Link/SYSMAC LINK System and/or SYSMAC NET Link System during each
cycle when a Controller Link/SYSMAC LINK Unit and/or SYSMAC NET Link
Unit is mounted to a Rack.

These times are recorded in 4-digit BCD to tenths of a millisecond (000.0 ms to
999.9 ms) and are refreshed every cycle.

Bits
15t012 | 11t0 08 | 07 to 04 | 03 to 00
102 101 100 10~1

3-5-10 Calendar/Clock Area and Bits

Calendar/Clock Area

A clock is built into the C200HX/HG/HE CPU Units. If AR 2114 (Clock Stop Bit) is
OFF, then the date, day, and time will be available in BCD in AR 18 to AR 20 and
AR 2100 to AR 2108 as shown below. This area can also be controlled with AR
2113 (30-second Compensation Bit) and AR 2115 (Clock Set Bit).

Calendar/Clock Bits
Bits Contents Possible values
AR 1800 to AR 1807 | Seconds 00 to 59
AR 1808 to AR 1815 | Minutes 00 to 59
AR 1900 to AR 1907 | Hours 00 to 23 (24-hour system)

AR 1908 to AR 1915

Day of month 01 to 31 (adjusted by month and for leap year)

AR 2000 to AR 2007 | Month 1to 12
AR 2008 to AR 2015 | Year 00 to 99 (Rightmost two digits of year)
AR 2100 to AR 2107 | Day of week 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:

Thursday; 05: Friday; 06: Saturday)

30-second Compensation Bit AR 2113 is turned ON to round the seconds of the Calendar/clock Area to zero,

i.e., if the seconds is 29 or less, it is merely set to 00; if the seconds is 30 or great-
er, the minutes is incremented by 1 and the seconds is set to 00.

57

AR (Auxiliary Relay) Area

Section 3-5

Clock Stop Bit

Clock Set Bit

1,2 3.

AR 2114 is turned OFF to enable the operation of the Calendar/clock Area and
ON to stop the operation.

AR 2115 is used to set the Calendar/clock Area as described below. This data
must be in BCD and must be set within the limits for the Calendar/clock Area
given above.

1. Turn ON AR 2114 (Stop Bit).

2. Set the desired date, day, and time, being careful not to turn OFF AR 2114
(Clock Stop Bit) when setting the day of the week (they’re in the same word).
(On the Programming Console, the Bit/Digit Monitor and Force Set/Reset
Operations are the easiest ways to set this data.)

3. Turn ON AR 2115 (Clock Set Bit). The Calendar/clock will automatically start
operating with the designated settings and AR 2114 and AR 2115 will both
be turned OFF.

The Calendar/clock Area and Bits are refreshed each cycle while operational.

3-5-11 TERMINAL Mode Key Bits

If the Programming Console is mounted to the PC and is in TERMINAL mode,
any inputs on keys 0 through 9 (including characters A through F, i.e, keys 0
through 5 with SHIFT) will turn ON a corresponding bit in AR 22. TERMINAL
mode is entered by a Programming Console operation.

The bits in AR 22 correspond to Programming Console inputs as follows:

Bit Programming Console input
AR 2200
AR 2201
AR 2202
AR 2203
AR 2204
AR 2205
AR 2206
AR 2207
AR 2208
AR 2209
AR 2210
AR 2211
AR 2212
AR 2213
AR 2214
AR 2215

MM O O|lw>» 0 ooNovldhlw(id=|O

Refer to Section 7 Program Monitoring and Execution for details on the TERMI-
NAL mode.

3-5-12 Power OFF Counter

58

AR 23 provides in 4-digit BCD the number of times that the PC power has been
turned OFF. This counter can be reset as necessary using the PV Change 1 op-
eration from the Programming Console. (Refer to 7-2-4 Hexadecimal/BCD Data
Modification for details.) The Power OFF Counter is refreshed every time power
is turned ON.

AR (Auxiliary Relay) Area Section 3-5

3-5-13 SYSMAC LINK - Programming Device Flags

A Programming Device can be used through the SYSMAC LINK System from
only one port at a time. When changing the port from which the Programming
Device is being used, turn ON the SYSMAC LINK — Programming Device Initiali-
zation Bit (AR 2403).

Bit Function

AR 2400 | SYSMAC LINK — RS-232C Programming Device Flag

(This flag is turned ON when a Programming Device is being used
through the SYSMAC LINK System from the RS-232C port.)

AR 2401 | SYSMAC LINK — Port A Programming Device Flag

(This flag is turned ON when a Programming Device is being used
through the SYSMAC LINK System from Communications Board port A.)
AR 2402 | SYSMAC LINK — Port B Programming Device Flag

(This flag is turned ON when a Programming Device is being used
through the SYSMAC LINK System form Communications Board port B.)

AR 2403 | SYSMAC LINK — Programming Device Initialization Bit
(Turn this bit ON to initialize the usage of a Programming Device through
the SYSMAC LINK System.)

3-5-14 Cycle Time Flag

AR 2405 turns ON when the cycle time set with SCAN(018) is shorter than the
actual cycle time.

AR 2405 is refreshed every cycle while the PC is in RUN or MONITOR mode.
3-5-15 Link Unit Mounted Flags

The following flags indicate when the specified Link Units are mounted to the
Racks. (Refer to 3-5-16 CPU Unit-mounting Device Mounted Flag for CPU Unit-
mounting Host Link Units.) These flags are refreshed every cycle.

Name Bit Link Unit
SYSMAC LINK/SYSMAC NET Link Unit | AR 2408 SYSMAC LINK/SYSMAC NET Link Unit in operating level 1
Level 1 Mounted Flag
SYSMAC LINK/SYSMAC NET Link Unit | AR 2409 SYSMAC LINK/SYSMAC NET Link Unit in operating level 0
Level 0 Mounted Flag
Rack-mounting Host Link Unit Level 1 AR 2413 Rack-mounting Host Link Unit in operating level 1
Rack-mounting Host Link Unit Level O AR 2414 Rack-mounting Host Link Unit in operating level O

3-5-16 CPU Unit-mounting Device Mounted Flag

AR 2415 turns ON when any device is mounted directly to the CPU Unit. This
includes CPU Unit-mounting Host Link Units, Programming Consoles, and In-
terface Units. This flag is refreshed every cycle.

3-5-17 FPD Trigger Bit

AR 2508 is used to adjust the monitoring time of FPD(269) automatically. Refer
to 5-26-12 FAILURE POINT DETECT — FPD(269) for details.

3-5-18 Data Tracing Flags and Control Bits

The following control bits and flags are used during data tracing with
TRSM(045). The Tracing Flag will be ON during tracing operations. The Trace
Completed Flag will turn ON when enough data has been traced to fill Trace

Memory.
Bit Name
AR 2512 Trace Completed Flag
AR 2513 Tracing Flag
AR 2514 Trace Trigger Bit (writeable)
AR 2515 Sampling Start Bit (writeable)

59

DM (Data Memory) Area

Section 3-6

Note Referto 5-26-3 TRACE MEMORY SAMPLING — TRSM(045) for details.

3-5-19 Cycle Time Indicators

AR 26 contains the maximum cycle time that has occurred since program execu-
tion was begun. AR 27 contains the present cycle time.

Both times are to tenths of a millisecond in 4-digit BCD (000.0 ms to 999.9 ms),
and are refreshed every cycle.

3-6 DM (Data Memory) Area

Indirect Addressing

60

Note

Note

The DM area is divided into various parts as described in the following table. A
portion of UM (up to 3,000 words in 1,000-word increments) can be allocated as
Expansion DM.

Addresses User Usage
read/write
DM 0000 to DM 0999 | Read/Write | Normal DM
DM 1000 to DM 2599 Special I/0 Unit Area
DM 2600 to DM 5999 Normal DM
DM 6000 to DM 6030 History Log
DM 6100 to DM 6143 Reserved
DM 6144 to DM 6599 | Read only System Settings
DM 6600 to DM 6655 PC Setup
DM 7000 to DM 9999 Expansion DM?2

1. The PC Setup can be set so that DM 7000 through DM 8599 are used as the
Special I/0 Area instead of DM 1000 to DM 2599. Refer to 3-6-5 PC Setup
for details.

2. The UM Area Allocation Programming Console operation can be used to al-
locate up to 3000 words of UM as Expansion DM.

Although composed of 16-bit words like any other data area, data in the DM area
cannot be specified by bit for use in instructions with bit operands. DM 0000 to
DM 6143 can be written to by the program, but DM 6144 to DM 6655 can be over-
written only from a Programming Device, such as a Programming Console or
computer running SYSMAC-CPT Support Software.

The DM area retains status during power interruptions.

DM 6031 cannot be used in user applications because it is used by the system to
store EM bank number information and indirect DM addresses.

Normally, when the content of a data area word is specified for an instruction, the
instruction is performed directly on the content of that word. For example, sup-
pose MOV(021) is performed with DM 0100 as the first operand and LR 20 as the
second operand. When this instruction is executed, the content of DM 0100 is
moved to LR 20.

Expansion DM cannot be used for indirect addressing.

It is possible, however, to use indirect DM addresses as the operands for many
instructions. To indicate an indirect DM address, *DM is input with the address of
the operand. With an indirect address, with content of this operand does not con-
tain the actual data to be used. Instead, it's contents is assumed to hold the ad-
dress of another DM word, the content of which will actually be used in the in-
struction. If «DM 0100 was used in our example above and the content of DM
0100 is 0324, then *DM 0100 actually means that the content of DM 0324 is to

DM (Data Memory) Area

Section 3-6

be used as the operand in the instruction, and the content of DM 0324 will be
moved to LR 00.

Word Content
DM 0099 4C59
:DMO10 _f————~DM 0100 | 0324

LR 00 Indirect Indicates
address DM 0101 F35A DM 0324

| 1
DM 0324 5555

DM 0325 [2506 | . 5555 moved
DM 0326 [D541 to LR 00.

--=--— Mov(21)

3-6-1 Expansion DM Area

UM ALLOCATION Operation

1,2, 3...

The expansion DM area is designed to provide memory space for storing oper-
ating parameters and other operating data for Link Units and Special I/0 Units.
Up to 3,000 words of UM can be allocated as Expansion DM (in 1K-word incre-
ments) using the UM ALLOCATION operation in the Programming Console or
SYSMAC-CPT Support Software. Expansion DM area addresses run from
DM 7000 to DM 9999.

The data in the expansion DM area can be transferred to the Special I/O Unit
Default Area (DM 1000 to DM 1999) when starting the PC or via programming
instruction to easily change operating parameters, enabling rapid switching be-
tween control processes. The expansion DM area can also be used to store pa-
rameters for other devices connected in the PC system, e.g., Programmable
Terminal character string or numeral tables.

The expansion DM area is used to store operating parameters and cannot be
used in programming like the normal DM area. Expansion DM can only be over-
written from a Programming Device, retains status during power interruptions,
and cannot be used for indirect addressing.

The UM area can be allocated as expansion DM area in increments of 1K words.
Once expansion DM area has been created, it is saved and transferred as part of
the program, i.e., no special procedures are required when saving or transfer-
ring the program.

The procedure for the Programming Console’s UM ALLOCATION operation is
shown below. Refer to 4-6-3 Clearing Memory for details on the DATA CLEAR
and UM ALLOCATION instructions.

1. Clear memory.

HEEEEH

Note UM allocation is not possible unless memory is cleared first.

2. The expansion DM area can be setto 0, 1, 2, or 3 K words. The following key
sequence creates a 2-KW expansion DM area (DM 7000 to DM 8999).

HEEEOEEO00E

Press the 0 Key to eliminate the expansion DM area (0 KW).
or Press the 1 Key to allocate DM 7000 to DM 7999 (1 KW).
or Press the 2 Key to allocate DM 7000 to DM 8999 (2 KW).

61

DM (Data Memory) Area

Section

or Press the 3 Key to allocate DM 7000 to DM 9999 (3 KW).

3-6-2 Special I/O Unit Data

Special I/O Units are allocated 1000 or 1600 words in the DM Area depending on
the value set in word DM 6602 of the PC Setup. The DM 6602 setting determines
whether the Special /0 Unit Data area is setup for 10 or 16 Units and whether
the data is stored in read/write DM (DM 1000 to DM 2599) or read-only DM

(DM 7000 to DM 8599).

Unit

Addresses

DM 1000 to DM 1099 or DM 7000 to DM 7099

DM 1100 to DM 1199 or DM 7100 to DM 7199

DM 1200 to DM 1299 or DM 7200 to DM 7299

DM 1300 to DM 1399 or DM 7300 to DM 7399

DM 1400 to DM 1499 or DM 7400 to DM 7499

DM 1500 to DM 1599 or DM 7500 to DM 7599

DM 1600 to DM 1699 or DM 7600 to DM 7699

DM 1700 to DM 1799 or DM 7700 to DM 7799

DM 1800 to DM 1899 or DM 7800 to DM 7899

DM 1900 to DM 1999 or DM 7900 to DM 7999

DM 2000 to DM 2099 or DM 8000 to DM 8099

DM 2100 to DM 2199 or DM 8100 to DM 8199

DM 2200 to DM 2299 or DM 8200 to DM 8299

DM 2300 to DM 2399 or DM 8300 to DM 8399

DM 2400 to DM 2499 or DM 8400 to DM 8499

Mmimololw oo Noa s N oo

DM 2500 to DM 2599 or DM 8500 to DM 8599

Note These DM words can be used for other purposes when not allocated to Special

1/0O Units.

3-6-3 Special I/O Units

The following table shows the Special I/0 Units that can be used and the unit

numbers that can be used for each.

Name Model number Unit number
range
High-density | DC Input Units C200H-ID501 Oto9
/O Units C200H-ID215
(see note) Transistor Output C200H-0OD215
Units C200H-0D501
DC Input/Transistor C200H-MD215
OQutput Units C200H-MD501
C200H-MD115
Gnalog I/O Analog Input Units C200H-ADOO01 0Oto9
nits

C200H-AD002

0to F (See note 1)

C200H-ADO003

0 to F (See note 2)

Analog Output Units

C200H-DA001

Oto9

C200H-DA002

0 to F (See note 1

C200H-DA003

C200H-DA004

0 to F (See note 2

Mixed Analog I/O
Unit

C200H-MADO1

)
0 to F (See note 2)
)
)

0 to F (See note 2

62

DM (Data Memory) Area

Section

3-6

Note

Name

Model number

Unit number
range

PID Control Units

C200H-PIDO1

C200H-PID02

C200H-PID03

Temperature Sensor Units

C200H-TS001

C200H-TS002

C200H-TS101

C200H-TS102

Temperature Control Units

C200H-TCO001

C200H-TCO002

C200H-TCO003

C200H-TC101

C200H-TC102

C200H-TC103

Heat/Cool Temperature
Control Units

C200H-TV001

C200H-TV002

C200H-TV003

C200H-TV101

C200H-TV102

C200H-TV103

Oto9

High-speed Counter Units

C200H-CT001-V1

C200H-CT002

Oto9

C200H-CTO021

0 to F (See note 4)

Position Control Units

C200H-NC111

C200H-NC112

Oto9

C200H-NC211

0to 8, Ato E (See
note 3)

Motion Control Unit

C200H-MC221

Oto8,AtoE

Cam Positioner Unit

C200H-CP114

Data Setting Console

C200H-DSCO01

ASCII Unit

C200H-ASC02

Fuzzy Logic Unit

C200H-FZ001

Voice Unit

C200H-OV001

ID Sensor Units

C200H-IDS01-V1

C200H-1DS21

Oto9

1. Unit numbers A to F can be set for these Units only for C200HX-

CPU54/CPUB4-ZE or C200HG-CPU53/63-ZE CPU Units manufactured in
or after January 1996 (manufacturing number **16). Only unit number 0 to 9
can be set for other CPU Units.

. Unit numbers A to F can be set for these Units only for C200HX-

CPU5[/CPUGBLI-ZE or C200HG-CPUS[I/6J-ZE CPU Units. Only unit
number 0 to 9 can be set for other CPU Units.

. Unit numbers A to E can be set for these Units only for C200HX-

CPU54/CPU6B4-ZE or C200HG-CPU53/63-ZE CPU Units manufactured in
or after December 1995 (manufacturing number **16). Only unit number 0
to 9 can be set for other CPU Units.

4. Unit numbers 0 to F can be set for the C200HX/HG/HE.
5. Unit numbers must also be set for PC Link Units and PC Link Units are

counted as Special I/0 Units, but no words are allocated to them.

63

DM (Data Memory) Area

Section 3-6

6. High-speed Counter Units, Position Control Unit, and Analog I/O Units are
allocated words in the DM Area. No other Units are allocated words in the
DM Area.

7. The C200H-NC221 and C200H-MC221 are allocated the words for two
Special I/0 Units (i.e., for two unit numbers).

3-6-4 Error History Area

Area Structure

64

DM 6000 to DM 6030 are used to store up to 10 records that show the nature,
time, and date of errors that have occurred in the PC.

The Error History Area will store system-generated or FAL(006)/FALS(007)-
generated error codes whenever AR 0715 (Error History Enable Bit) is ON. Re-
fer to Section 9 Troubleshooting for details on error codes.

Error records occupy three words each stored between DM 6001 and DM 6030.
The last record that was stored can be obtained via the content of DM 6000 (Er-
ror Record Pointer). The record number, DM words, and pointer value for each of
the ten records are as follows:

Record Addresses Pointer value
None N.A. 0000
1 DM 6001 to DM 6003 0001
2 DM 6004 to DM 6006 0002
3 DM 6007 to DM 6009 0003
4 DM 6010 to DM 6012 0004
5 DM 6013 to DM 6015 0005
6 DM 6016 to DM 6018 0006
7 DM 6019 to DM 6021 0007
8 DM 6022 to DM 6024 0008
9 DM 6025 to DM 6027 0009
10 DM 6028 to DM 6030 000A

Although each of them contains a different record, the structure of each record is
the same: the first word contains the error code; the second and third words, the
day and time. The error code will be either one generated by the system or by
FAL(006)/FALS(007); the time and date will be the date and time from AR 18 and
AR 19 (Calender/date Area). Also recorded with the error code is an indication of
whether the error is fatal (08) or non-fatal (00). This structure is shown below.

Word Bit Content
First 00 to 07 Error code
08to 15 00 (non-fatal) or 80 (fatal)
Second 00 to 07 Seconds
08to 15 Minutes
Third 00 to 07 Hours
081to 15 Day of month

DM (Data Memory) Area Section 3-6
The following table lists the possible error codes and corresponding errors.

Error severity Error code Error

Fatal errors 00 Power interruption
01 to 99 or 9F System error (FALS)
CO0to C3 I/O bus error
EO Input-output I/O table error
E1 Too many Units
FO No END(001) instruction
F1 Memory error

Non-fatal errors | 01 to 99 System error (FAL)
8A Interrupt Input error
8B Interrupt program error
9A Group 2 High-density /O error
9B PC Setup error
9C Communications Board error
9D UM Memory Cassette transfer error
BO to B1 Remote I/O error
DO Special I/O error
E7 I/O table verification error
F7 Battery error
F8 Cycle time overrun

Operation When the first error code is generated with AR 0715 (Error History Enable Bit)

3-6-5 PC Setup

1,2, 3.

turned ON, the relevant data will be placed in the error record after the one indi-
cated by the History Record Pointer (initially this will be record 1) and the Pointer
will be incremented. Any other error codes generated thereafter will be placed in
consecutive records until the last one is used. Processing of further error records
is based on the status of AR 0713 (Error History Overwrite Bit).

If AR 0713 is ON and the Pointer contains 000A, the next error will be written into
record 10, the contents of record 10 will be moved to record 9, and so on until the
contents of record 1 is moved off the end and lost, i.e., the area functions like a
shift register. The Record Pointer will remain set to 000A.

If AR 0713 is OFF and the Pointer reaches 000A, the contents of the Error Histo-
ry Error will remain as it is and any error codes generate thereafter will not be
recorded until AR 0713 is turned OFF or until the Error History Area is reset.

The Error History Area can be reset by turning ON and then OFF

AR 0714 (Error History Reset Bit). When this is done, the Record Pointer will be
reset to 0000, the Error History Area will be reset (i.e., cleared), and any further
error codes will be recorded from the beginning of the Error History Area.
AR 0715 (Error History Enable Bit) must be ON to reset the Error History Area.

The PC Setup (DM 6600 through DM 6655) contains settings that determine PC
operation. Data in the PC Setup can be changed with a Programming Console or
SYSMAC-CPT Support Software if UM is not write-protected by pin 1 of the CPU
Unit's DIP switch. Refer to page 23 for details on changing DIP switch pin set-
tings.

The data in DM 6600 through DM 6634 can be set or changed only when the PC
is in PROGRAM mode. The data in DM 6635 through DM 6655 can be set or
changed when the PC is in PROGRAM or MONITOR mode. The following words
can be changed from the SYSMAC Support Software’s PC Setup menu. (The
PC must be in PROGRAM mode.)

1. Startup mode (DM 6600)

65

DM (Data Memory) Area

Section 3-6

2. Startup mode designation (DM 6601)
3. Cycle monitor time (DM 6618)
4. Cycle time setting (DM 6619)

5. RS-232C Port Settings (DM 6645 through DM 6649)

The PC can be operated with the default PC Setup, which requires changing
only when customizing the PC’s operating environment to application needs.
The PC Setup parameters are described in the following table.

If there is an error in the settings in DM 6600 to DM 6655, a non-fatal error (error
code 9B) will occur when the data is read by the PC and one of the flags from
SR 27500 to SR 27502 will turn ON to indicate the location of the error. If there is
an error in the settings in DM 6550 to DM 6559, a non-fatal error (error code 9C)

will occur.
Word(s) | Bit(s) | Function Default
Startup Processing (DM 6600 to DM 6612)
The following settings are accessed only once when the PC is turned ON.
DM 6600 00 to 07 | Startup mode (effective when bits 08 to 15 are set to 02). PROGRAM

00: PROGRAM; 01: MONITOR 02: RUN

081to 15

Startup mode designation

00: Programming Console switch

01: Continue operating mode last used before power was turned OFF
02: Setting in 00 to 07

Programming
Console switch

DM 6601 00 to 07

Reserved

08 to 11

IOM Hold Bit (SR 25212) Status
0: Reset; 1: Maintain

1210 15

Forced Status Hold Bit (SR 25211) Status
0: Reset; 1: Maintain

Reset

66

DM (Data Memory) Area

Section

3-6

Word(s)

Bit(s)

Function

Default

DM 6602

00 to 07

Not used.

08to 15

Special I/O Unit Area (See 3-4-8 Special I/0O Unit Area Settings for details.)

00: C200H-compatible RAM Mode (Default)
Use DM 1000 through DM 2599 for the Special 1/0 Unit Area.

o Data in the Special I/0 Unit Area can be read/written.
e The data cannot be converted to ROM.

01: C200H-compatible ROM Mode 1
Transfer the contents of DM 7000 through DM 7999 to DM 1000
through DM 1999 at startup and use DM 1000 through DM 1999.

e The UM Area Allocation operation must be performed beforehand.

e The data is compatible with C200H applications that use EEPROM/
EPROM.

* ROM conversion is possible indirectly by writing DM 7000 through DM
7999 to ROM.

02: DM Linear Mode 1
Use DM 7000 through DM 7999 for the Special 1/0 Unit Area.

e The UM Area Allocation operation must be performed beforehand.
e DM 1000 through DM 1999 can be used as regular DM.
* DM 7000 through DM 7999 can be converted to ROM.

11: C200H-compatible ROM Mode 2
Transfer the contents of DM 7000 through DM 8599 to DM 1000
through DM 2599 at startup and use DM 1000 through DM 2599.

e The UM Area Allocation operation must be performed beforehand.

* ROM conversion is possible indirectly by converting DM 7000 through
DM 8599 to ROM.

12: DM Linear Mode 2
Use DM 7000 through DM 8599 for the Special 1/0 Unit Area.

e The UM Area Allocation operation must be performed beforehand.
DM 1000 through DM 2599 can be used as regular DM.
¢ DM 7000 through DM 8599 can be converted to ROM.

See also 3-6-7 Special I/0 Unit Area Settings.

DM 1000 to
DM 2599

DM 66083 to
DM 6604

00to 15

Not used.

DM 6605

00 to 07

Momentary power interruption time (0 to 10 ms)
Set the momentary power interruption time from 00 to 10 in BCD.

08to 15

Not used.

DM 6606 to
DM 6612

00to 15

Not used.

The following

settings ar:

Communications and Cycle Time Settings (DM 6613 to DM 6619)

e accessed only once when program execution begins.

DM 6613

00 to 07

Servicing time for Communications Board port B
(effective when bits 08 to 15 are set to 01)
00 to 99 (BCD): Percentage of cycle time used to service port B.

Minimum: 0.26 ms; maximum 58.254 ms

08 to 15

Communications Board port B servicing setting enable
00: Do not set service time (Fixed at 5%, 0.26 ms min.)
01: Use time in 00 to 07.

Service time is 10 ms when operation is stopped, regardless of this setting.

No setting
(0000)

67

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6614 00 to 07 | Servicing time for Communications Board port A No setting
(effective when bits 08 to 15 are set to 01) (0000)
00 to 99 (BCD): Percentage of cycle time used to service port A.
Minimum: 0.26 ms; maximum 58.254 ms
08 to 15 | Communications Board port A servicing setting enable
00: Do not set service time (Fixed at 5%, 0.26 ms min.)
01: Use time in 00 to 07.
Service time is 10 ms when operation is stopped, regardless of this setting.
DM 6615 00 to 15 | Reserved
DM 6616 00 to 07 | Servicing time for RS-232C port (effective when bits 08 to 15 are set to 01) No setting
00 to 99 (BCD): Percentage of cycle time used to service RS-232C port. (0000)
Minimum: 0.26 ms; maximum 58.254 ms
08 to 15 | (RS-232C port servicing setting enable)
00: Do not set service time (Fixed at 5%, 0.26 ms min.)
01: Use time in 00 to 07.
Service time is 10 ms when operation is stopped, regardless of this setting.
DM 6617 00 to 07 | Servicing time for peripheral port (effective when bits 08 to 15 are set to 01) | No setting
00 to 99 (BCD): Percentage of cycle time used to service peripheral. (0000)
Minimum: 0.26 ms; maximum 58.254 ms
08 to 15 | Peripheral port servicing setting enable
00: Do not set service time (Fixed at 5%, 0.26 ms min.)
01: Use time in 00 to 07.
Service time is 10 ms when operation is stopped, regardless of this setting.
DM 6618 00 to 07 | Cycle monitor time (effective when bits 08 to 15 are set to 01, 02, or 03) 00
00 to 99 (BCD) x setting unit (see 08 to 15)
08 to 15 | Cycle monitor enable (Setting in 00 to 07 x setting unit; 99 s max.) 00: 120 ms
00: 120 ms (setting in bits 00 to 07 disabled)
01: Setting unit: 10 ms
02: Setting unit: 100 ms
03: Setting unit: 1 s
DM 6619 00 to 15 | Cycle time Variable
0000: Variable (no minimum)
0001 to 9999 (BCD): Minimum time in ms
Interrupt/Refresh Processing (DM 6620 to DM 6623)
The following settings are accessed only once when program execution begins.
DM 6620 00 to 09 | Special I/O Unit cyclic refresh (Bit number corresponds to unit number, PC Enable
Link Units included)
0: Enable cyclic refresh and I/O REFRESH (IORF(097)) from main program
1: Disable (refresh only for I/O REFRESH from interrupt programs)
A setting of 01 (Disable) is valid only when the interrupt response is set to
high-speed response mode. It is not valid for normal interrupt response or for
Special I/O Units mounted in Slave Racks.
10to 11 | Reserved
12to 15 | Interrupt response Normal
0: Normal (C200H compatible)
Interrupts cannot be received when Host Link servicing, execution of a
single instruction, Remote I/O processing, or Special I/O processing is
being performed. The interrupt subroutine will be executed after the
processing is completed.
1: High-speed Response (C200HS or C200HX/HG/HE)
Interrupts will be received when Host Link servicing, execution of a
single instruction, Remote I/O processing, or Special I/O processing is
being performed. If there is an interrupt input, the current processing will
be interrupted and the interrupt subroutine will be executed.

68

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6621 00 to 07 | Reserved
08 to 15 | Special I/O Unit refresh (PC Link Units included) Enable
00: Enable refresh for all Special /0 Units
01: Disable refresh for all Special I/O Units (but, not valid on Slave Racks)
A setting of 1 (Disable) is not valid for Special I/O Units mounted in Slave
Racks.
DM 6622 00 to 07 | Scheduled interrupt time unit 10 ms
00: 10 ms (0000)
01:1ms
08 to 15 | Scheduled interrupt time unit enable
00: Disable (10 ms)
01: Enable setting in 00 to 07
DM 6623 00 to 15 | Special I/O Unit cyclic refresh (PC Link Units included) Enable
(Bit numbers 00 to 15 correspond to unit numbers 0 to F.)
0: Enable cyclic refresh and I/O REFRESH (IORF(097)) from main program
1: Disable (refresh only for I/O REFRESH from interrupt programs)
A setting of 01 (Disable) is valid only when the interrupt response is set to
high-speed response mode. It is not valid for normal interrupt response or for
Special I/0O Units mounted in Slave Racks.
DM 6624 to | 00 to 15 | Reserved
DM 6644
RS-232C Port Settings (DM 6645 to DM 6649)
The following settings are accessed continually while the PC is ON.
DM 6645 00 to 03 | Port settings Standard
0: Standard (Host Link or peripheral bus serial communications mode, 1
start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
1: Settings in DM 6646
04 to 07 | CTS control setting Disable
0: Disable CTS control
1: Enable CTS control
08 to 11 | Words linked for 1:1 PC Link LR 00 to LR 63
0: LRO0to LR 63; 1: LR00to LR 31; 2: LR 00 to LR 15
Maximum PT node number for 1:N NT Link
1to 7 BCD (1 to 3 with a C200HE-CPU[IJ-ZE PC)
12to 15 | Serial communications mode Host Link
0: Host link; 1: RS-232C; 2: 1-to-1 PC Link Slave; 3: 1-to-1 PC Link Master;
4: 1:1 NT link; 5: 1:N NT link
DM 6646 00 to 07 | Baud rate 1.2K
00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K
08 to 15 | Frame format 1 start bit, 7-bit
Start Length Stop Parity data, 1 stop bit,
00: 1 bit 7 bits 1 bit Even even parity
0f: 1 bit 7 bits 1 bit Odd
02: 1 bit 7 bits 1 bit None
03: 1 bit 7 bits 2 bit Even
04: 1 bit 7 bits 2 bit Odd
05: 1 bit 7 bits 2 bit None
06: 1 bit 8 bits 1 bit Even
07: 1 bit 8 bits 1 bit Odd
08: 1 bit 8 bits 1 bit None
09: 1 bit 8 bits 2 bit Even
10: 1 bit 8 bits 2 bit Odd
11: 1 bit 8 bits 2 bit None
DM 6647 00 to 15 | Transmission delay 0Oms

0000 to 9999: BCD in 10-ms units.

69

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6648 00 to 07 | Node number (Host Link) 0
00 to 31 (BCD)
08 to 11 | Start code enable (RS-232C) Disabled
0: Disable; 1: Set
1210 15 | End code enable (RS-232C) Disabled
0: Disable (number of bytes received)
1: Set (specified end code)
2:CR, LF
DM 6649 00 to 07 | Start code (RS-232C) Not used
00 to FF (binary) (0000)

08to 15 | 12 to 15 of DM 6648 set to 0:
Number of bytes received

00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes

12 to 15 of DM 6648 set to 1:
End code (RS-232C)
00 to FF (binary)

Peripheral Port Settings (DM 6650 to DM 6654)
The following settings are accessed continually while the PC is ON.

and turn ON again or disconnect and reconnect the cable.

Note: To use the peripheral port set to Host Link mode after using it in peripheral bus mode, turn OFF the power once

00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K

DM 6650 00 to 03 | Port settings Standard
0: Standard (Host Link or peripheral bus serial communications mode, 1
start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
1: Settings in DM 6651
04 to 11 | Reserved -
12to 15 | Serial communications mode Host Link
0: Host link; 1: No-protocol
DM 6651 00 to 07 | Baud rate 1.2K

08 to 15 | Frame format

1 start bit, 7-bit

0: Disable (number of bytes received)
1: Set (specified end code)
2:CR, LF

Start Length Stop Parity data, 1 stop bit,
00: 1 bit 7 bits 1 bit Even even parity
01: 1 bit 7 bits 1 bit Odd
02: 1 bit 7 bits 1 bit None
03: 1 bit 7 bits 2 bit Even
04: 1 bit 7 bits 2 bit Odd
05: 1 bit 7 bits 2 bit None
06: 1 bit 8 bits 1 bit Even
07: 1 bit 8 bits 1 bit Odd
08: 1 bit 8 bits 1 bit None
09: 1 bit 8 bits 2 bit Even
10: 1 bit 8 bits 2 bit Odd
11: 1 bit 8 bits 2 bit None
DM 6652 00 to 15 | Transmission delay (Host Link) 0O ms
0000 to 9999: in 10-ms units.
DM 6653 00 to 07 | Node number (Host Link) 0
00 to 31 (BCD)
08 to 11 | Start code enable (RS-232C) Disable
0: Disable; 1: Set
12t0 15 | End code enable (RS-232C) Disable

70

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6654 00 to 07 | Start code (RS-232C) 0000
00 to FF (binary)
08to 15 | 12 to 15 of DM 6653 set to 0:
Number of bytes received
00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes
12 to 15 of DM 6653 set to 1:
End code (RS-232C)
00 to FF (binary)
Error Settings (DM 6655)
The following settings are accessed continually while the PC is ON.
DM 6655 00 to 03 | Interrupt programming error enable Detect
0: Detect interrupt programming errors
1: Do not detect
04 to 07 | Reserved ---
08 to 11 | Cycle time monitor enable Detect
0: Detect long cycles as non-fatal errors
1: Do not detect long cycles
1210 15 | Low battery error enable Detect
0: Detect low battery voltage as non-fatal error
1: Do not detect low battery voltage

3-6-6 Communications Board Settings

DM 6550 through DM 6554 contain the communications settings for Commu-
nications Board port B and DM 6555 through DM 6559 contain the communica-

tions settings for Communications Board port A.

0: Host link; 1: RS-232C; 2: 1:1 PC Link Slave; 3: 1:1 PC Link Master;
4:1:1 NT link; 5: 1:N NT link; 6: Protocol Macro

Word(s) | Bit(s) | Function | Default
Communications Board Port B Settings (DM 6550 to DM 6554)
The following settings are accessed continually while the PC is ON.
DM 6550 00 to 03 | Port settings Standard
0: Standard (1 start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
1: Settings in DM 6551
04 to 07 | CTS control setting Disable
0: Disable CTS control
1: Enable CTS control
08 to 11 | Words linked for 1:1 PC Link (Cannot be changed once set in the 1:1 PC LR 00 to LR 63
Link Master.)
0: LRO0to LR 63; 1: LR00to LR 31; 2: LR 00 to LR 15
Maximum PT node number for 1:N NT Link
1to 7 BCD (1 to 3 with a C200HE-CPULI[J-ZE PC)
12t0 15 | Communications mode Host Link

71

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6551 00 to 07 | Baud rate 1.2K

00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K

08to 15

Frame format
Start
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

Length
7 bits
7 bits
7 bits
7 bits
7 bits
7 bits
8 bits
8 bits
8 bits
8 bits
8 bits
8 bits

Stop
1 bit
1 bit
1 bit
2 bit
2 bit
2 bit
1 bit
1 bit
1 bit
2 bit
2 bit
2 bit

Parity
Even
Odd
None
Even
Odd
None
Even
Odd
None
Even
Odd
None

1 start bit, 7-bit
data, 1 stop bit,
even parity

DM 6552

00to 15

Transmission delay
0000 to 9999: BCD in 10-ms units.

Oms

DM 6553

00 to 07

Node number (Host Link)
00 to 31 (BCD)

0

08 to 11

Start code enable (RS-232C)
0: Disable; 1: Set

Disabled

12t0 15

End code enable (RS-232C)

0: Disable (number of bytes received)
1: Set (specified end code)

2:CR, LF

Disabled

DM 6554

00 to 07

Start code (RS-232C)
00 to FF (binary)

08to 15

12 to 15 of DM 6553 set to O:
Number of bytes received

00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes

12 to 15 of DM 6553 set to 1:
End code (RS-232C)
00 to FF (binary)

0000

The following

settings ar:

Communications Board Port A Settings (DM 6555 to DM 6559)

e read continually while the PC is ON.

DM 6555

00 to 03

Port settings
0: Standard (1 start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
1: Settings in DM 6556

Standard

04 to 07

CTS control setting
0: Disable CTS control
1: Enable CTS control

Disable

08 to 11

Words linked for 1:1 PC Link (Can’t be changed once set in the 1:1 PC Link
Master.)
0: LRO0Oto LR63;1: LR0O0Oto LR31;2: LR0OOto LR 15

Maximum PT node number for 1:N NT Link
1to 7 BCD (1 to 3 with a C200HE-CPU[J[J-ZE PC)

LR 00 to LR 63

12t0 15

Communications mode
0: Host Link; 1: RS-232C; 2: 1:1 PC Link Slave; 3: 1:1 PC Link Master;

4:1:1 NT link; 5: 1:N NT link; 6: Protocol Macro

Host Link

72

DM (Data Memory) Area Section 3-6
Word(s) Bit(s) Function Default
DM 6556 00 to 07 | Baud rate 1.2K
00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K
08 to 15 | Frame format 1 start bit, 7-bit
Start Length Stop Parity data, 1 stop bit,
00: 1 bit 7 bits 1 bit Even even parity
0t: 1 bit 7 bits 1 bit Odd
02: 1 bit 7 bits 1 bit None
03: 1 bit 7 bits 2 bit Even
04: 1 bit 7 bits 2 bit Odd
05: 1 bit 7 bits 2 bit None
06: 1 bit 8 bits 1 bit Even
07: 1 bit 8 bits 1 bit Odd
08: 1 bit 8 bits 1 bit None
09: 1 bit 8 bits 2 bit Even
10: 1 bit 8 bits 2 bit Odd
11: 1 bit 8 bits 2 bit None
DM 6557 00 to 15 | Transmission delay 0ms
0000 to 9999: BCD in 10-ms units.
DM 6558 00 to 07 | Node number (Host Link) 0
00 to 31 (BCD)
08 to 11 | Start code enable (RS-232C) Disabled
0: Disable; 1: Set
12to 15 | End code enable (RS-232C) Disabled
0: Disable (number of bytes received)
1: Set (specified end code)
2:CR, LF
DM 6559 00 to 07 | Start code (RS-232C) 0000
00 to FF (binary)
08to 15 | 12 to 15 of DM 6558 set to O:
Number of bytes received
00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes
12 to 15 of DM 6558 set to 1:
End code (RS-232C)
00 to FF (binary)
3-6-7 Special I/0O Unit Area Settings

The setting in bits 08 through 15 of DM 6602 determines the size and location of
the Special I/0 Unit Area, as shown in the following table.

Setting Mode Function
00 C200H-compatible | DM 1000 through DM 2599 are used for the Special I/O Unit Area.
RAM Mode « Data in the Special I/O Unit Area can be read/written.
¢ The data cannot be converted to ROM.
01 C200H-compatible | The contents of DM 7000 through DM 7999 are transferred to DM 1000 through DM 1999
ROM Mode 1 at startup and DM 1000 through DM 1999 are used for the Special I/O Unit Area.
e The UM Area Allocation operation must be performed beforehand.
¢ The data is compatible with C200H applications that use EEPROM/EPROM.
* ROM conversion is possible indirectly by converting DM 7000 through DM 7999 to ROM.
02 DM Linear Mode 1 | DM 7000 through DM 7999 are used for the Special I/O Unit Area.
e The UM Area Allocation operation must be performed beforehand.
DM 1000 through DM 1999 can be used as regular DM.
e DM 7000 through DM 7999 can be converted to ROM.

73

TC (Timer/Counter) Area Section 3-8
Setting Mode Function
11 C200H-compatible | The contents of DM 7000 through DM 8599 are transferred to DM 1000 through DM 2599
ROM Mode 2 at startup and DM 1000 through DM 2599 are used for the Special /0 Unit Area.
e The UM Area Allocation operation must be performed beforehand.
 ROM conversion is possible indirectly by converting DM 7000 through DM 8599 to ROM.
12 DM Linear Mode 2 | DM 7000 through DM 8599 are used for the Special I/O Unit Area.

e The UM Area Allocation operation must be performed beforehand.
* DM 1000 through DM 2599 can be used as regular DM.
e DM 7000 through DM 8599 can be converted to ROM.

DM 7000 through DM 9999 cannot be read or overwritten directly from the pro-
gram. To read this data from the program, the data must be copied to another
data area or regular DM using the EXPANSION DM READ — XDMR(280) in-
struction.

When C200H-compatible ROM Mode or DM Linear Mode is set, the UM Area
Allocation operation must be performed in advance to allocate part of the ladder
program area for use as expansion DM. A system error (FAL 9B) will occur if
memory isn't allocated as expansion DM. Refer to 7-2-15 UM Area Allocation for
details on the UM Area Allocation operation.

When DM Linear Mode is set, the Special I/O Unit's data area will begin from
DM 7000 instead of DM 1000 so add 6000 to the DM addresses where they ap-
pear in the Special /0 Unit's Operation Manual.

When the Special I/0 Unit Area setting is 01, 02, 11, or 12 and expansion DM
beyond DM 8000 hasn’t been allocated, a Special I/O Unit error will occur for a
Unit with unit number A through F when the Unit accesses its allocated area.

3-7 HR (Holding Relay) Area

Note

The HR area is used to store/manipulate various kinds of data and can be ac-
cessed either by word or by bit. Word addresses range from HR 00 through HR
99; bit addresses, from HR 0000 through HR 9915. HR bits can be used in any
order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed, when
power is interrupted, or when PC operation is stopped.

HR area bits and words can be used to preserve data whenever PC operation is
stopped. HR bits also have various special applications, such as creating latch-
ing relays with the Keep instruction and forming self-holding outputs. These are
discussed in Section 4 Writing and Inputting the Program and Section 5 Instruc-
tion Set.

The required number of words is allocated between HR 00 and HR 42 for routing
tables and to monitor timers when using SYSMAC NET Systems.

3-8 TC (Timer/Counter) Area

74

The TC area is used to create and program timers and counters and holds the
Completion flags, set values (SV), and present values (PV) for all timers and
counters. All of these are accessed through TC numbers ranging from TC 000
through TC 511. Each TC number is defined as either a timer or counter using
one of the following instructions: TIM, TIMH, CNT, CNTR(012), and TTIM(087).
No prefix is required when using a TC number in a timer or counter instruction.

Once a TC number has been defined using one of these instructions, it cannot
be redefined elsewhere in the program either using the same or a different in-
struction. If the same TC number is defined in more than one of these instruc-
tions or in the same instruction twice, an error will be generated during the pro-
gram check. There are no restrictions on the order in which TC numbers can be
used.

LR (Link Relay) Area

Section 3-9

Once defined, a TC number can be designated as an operand in one or more of
certain set of instructions other than those listed above. When defined as a timer,
a TC number designated as an operand takes a TIM prefix. The TIM prefix is
used regardless of the timer instruction that was used to define the timer. Once
defined as a counter, the TC number designated as an operand takes a CNT
prefix. The CNT is also used regardless of the counter instruction that was used
to define the counter.

TC numbers can be designated for operands that require bit data or for operands
that require word data. When designated as an operand that requires bit data,
the TC number accesses the completion flag of the timer or counter. When des-
ignated as an operand that requires word data, the TC number accesses a mem-
ory location that holds the PV of the timer or counter.

TC numbers are also used to access the SV of timers and counters from a Pro-
gramming Device. The procedures for doing so using the Programming Console
are provided in 7-1 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power interrup-
tions. The PVs of timers are reset when PC operation is begun and when reset in
interlocked program sections, but the PVs of counters are retained. Refer to
5-10 INTERLOCK and INTERLOCK CLEAR — IL(002) and ILC(003) for details
on timer and counter operation in interlocked program sections. The PVs of
counters are not reset at these times.

Note that in programming “TIM 000” is used to designate three things: the Timer
instruction defined with TC number 000, the completion flag for this timer, and
the PV of this timer. The meaning in context should be clear, i.e., the first is al-
ways an instruction, the second is always a bit, and the third is always a word.
The same is true of all other TC numbers prefixed with TIM or CNT.

3-9 LR (Link Relay) Area

The LR area is used as a common data area to transfer information between
PCs. This data transfer is achieved through a PC Link System.

Certain words will be allocated as the write words of each PC. These words are
written by the PC and automatically transferred to the same LR words in the
other PCs in the System. The write words of the other PCs are transferred in as
read words so that each PC can access the data written by the other PCs in the
PC Link System. Only the write words allocated to the particular PC will be avail-
able for writing; all other words may be read only. Refer to the PC Link System
Manual for details.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR area bit addresses, from LR 0000 to LR 6315. Any
part of the LR area that is not used by the PC Link System can be used as work
words or for SYSMAC NET Link or SYSMAC LINK Systems.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program sec-
tion. Refer to 5-10 INTERLOCK and INTERLOCK CLEAR - IL(002) and
ILC(003) for details on interlocks.

75

UM Area Section 3-10

3-10 UM Area

With the C200HX/HG/HE PCs, the UM area contains the ladder program. Part of
the UM area can be allocated for use as expansion DM or the I/O comment area.
The usable size of the UM area ranges from 3.2 KW in the C200HE-CPU11-ZE
to 63.2 KW in the C200HX-CPU65-ZE and C200HX-CPU85-ZE.

A Programming Console or SYSMAC-CPT Support Software can be used to al-
locate expansion DM, but the I/O comment area can be allocated with SYSMAC-
CPT Support Software only. The structure of the DM and UM areas is shown in
the following illustration.

DM 0000 DM 6144 DM 6600 DM6655 DM 7000 DM 9999

: ' Expansion

| : PC Setup | Reserved 5(,& Arclaa 1/0 Comment Ladder program

; ! (Oto3Kw) | Area
‘] ‘ Variabe < ‘
 Special I/0 Unit Default Area ariable size ‘
‘ DM 1000 to DM 1999 ‘ Fixed DM Area j UM Area (64 KW max.) :

Normal DM Area ! ROM-convertible Area

Note Refer to the SYSMAC-CPT Support Software Manual for details on using the
software to allocate UM for expansion DM or I/O comments. Refer to 7-2-15 UM
Area Allocation for details on using the Programming Console to allocate UM for
expansion DM.

Area Function

Normal DM This area can be used freely for calculations and programming
instructions. DM can be accessed in word units only.

DM 1000 through DM 2599 are assigned to Special I/O Units
when Special I/0 Units are being used, but can be used as
normal DM when the Special I/O Unit Area has been set to
DM 7000 through DM 8599 in the PC Setup (DM 6602).

PC Setup The PC Setup contains various settings that control PC operation.
Reserved This area is reserved for system use. It cannot be accessed by
the user.

Expansion DM | This area contains initialing data such as Special I/O Unit data,
numerical or character string tables for PTs, and calculation data.
Data can’t be read directly from the expansion DM area as it can
from normal DM.

Expansion DM can be overwritten by performing the
Hexadecimal/BCD Data Modification operation from a
Programming Console or by transferring edited DM data from
SYSMAC Support Software.

I/O comment This area is used to store I/O comments, which can be saved
together with the program. The 1/0O comments will be
automatically uploaded with the program and automatically
allocated so that monitored can be performed with I/O
Comments.

Ladder program | This area is used to store the ladder program created by the user.
UM area words allocated to expansion DM and/or the 1/0
Comment Area are taken from the ladder program area.

Note 1. The ladder program area is reduced proportionately when UM area words
are allocated to expansion DM and/or the I/O Comment Area. Make sure
that there is enough excess capacity in the ladder program area before allo-
cating memory to expansion DM and/or the I/O Comment Area.

2. The default setting for the UM area doesn’t have any memory allocated to
expansion DM or the I/O Comment Area. This memory must be allocated by
the user as required.

76

EM (Extended Data Memory) Area Section 3-12

3-11 TR (Temporary Relay) Area

The TR area provides eight bits that are used only with the LD and OUT instruc-
tions to enable certain types of branching ladder diagram programming. The use
of TR bits is described in Section 4 Writing and Inputting the Program.

TR addresses range from TR 0 though TR 7. Each of these bits can be used as
many times as required and in any order required as long as the same LR bit is
not used twice in the same instruction block.

3-12 EM (Extended Data Memory) Area

In addition to the high-capacity DM area, C200HG and C200HX PCs are
equipped with an EM area that can store up to 96K-words of data. The EM area
is divided into banks which contain 6,144 words each (EM 0000 through
EM 6143).

The C200HG PCs have one bank (bank 0), the C200HX-CPU[14-ZE PCs have
three banks (0, 1, and 2), the C200HX-CPU65-ZE has eight banks (0 through 7),
and the C200HX-CPU85-ZE has sixteen banks (0 through F). The effective
bank is called the current bank.

3-12-1 Using the EM Area

Example 1

Although addresses in the current bank of the EM Area can be used as operands
in programming instructions, the other banks of the EM Area can’t be accessed
directly. To access data in the other banks, the PCs are provided with the
EMBC(281), XFR2(—), BXF2(—), and IEMS(—) instructions.

Instruction Function

EMBC(281) Changes the current bank to the specified bank number.

XFR2(—) Transfers data within the current EM bank or between the current
EM bank and one of the regular data areas.

BXF2(—) Transfers data between the specified EM bank and another EM
bank or a regular data area.

IEMS(—) Switches the destination of indirect addressing (xDM) to the
specified EM bank. Can also switch the destination back to DM.

The following example uses EMBC(281) to set the current bank to bank 1 and
XFR2(—) to transfer the contents of EM 2000 through EM 2999 to DM 0000
through DM 0999. After execution of a program section, the contents of
DM 0000 through DM 0999 are transferred back to EM 2000 through EM 2999.

— | EMBC

#0001

XFR2

#1000

#2000

DO0000

2N Data processing performed with
~ data in DM 0000 through DM 0999.

XFR2

#1000

DO0000

#2000

Note If BXF2(—) were used to perform the data transfers, any EM bank could be spe-

cified and EMBC(281) would not be required to select EM bank 1.

77

EM (Extended Data Memory) Area Section 3-12

Example 2

Note

The following example uses IEMS(—) to change the destination for indirect ad-
dressing (*DM) to EM bank 1. After this instruction is executed, +DM operands
access words in EM bank 1 and not the DM area. In this case, the second oper-
and in the MOV(021) instruction transfers #1234 to a word in the EM bank. (For
example, #1234 will be moved to EM 0100 if DM 0000 contains 0100.)

Later in the program, the destination for indirect addressing (*DM) is switched
back to the DM area by executing IEMS(—) with an operand of 000.

_| : IEMS
#E0BA
_| |
| MOV
#1234
+D0000
_| |
| IEMS
000

1. Be sure to return the indirect addressing destination to its default (the DM
area) when necessary. The destination will be returned to the DM area auto-
matically at the beginning of the next cycle.

2. The destination for indirect addressing reverts to the DM area at the start of
interrupt subroutines, but can be changed within a subroutine. The destina-
tion is returned to its original setting when control is returned to the main pro-
gram.

3-12-2 The Current EM Bank

78

The current EM bank is set to bank 0 when the PC is turned ON, and the current
EM bank can be changed by EMBC(281) or IEMS(—). Unlike the destination for
indirect addressing, the current bank number is not initialized at the start of a
cycle or the start of an interrupt subroutine.

After the PC has been turned ON, the switched bank status will be resumed after
the PC mode is changed or execution of an interrupt subroutine is completed.

SECTION 4
Writing and Inputting the Program
This section explains the basic steps and concepts involved in writing a basic ladder diagram program, inputting the program

into memory, and executing it. It introduces the instructions that are used to build the basic structure of the ladder diagram and
control its execution. The entire set of instructions used in programming is described in Section 5 Instruction Set.

4-1 Basic Procedure 81
4-2 Instruction Terminologyottt e 81
4-3 Program Capacityottt et e 82
4-4 Basic Ladder Diagramsttt e 82
4-4-1 Basic TermSttt e e 83
4-4-2 Mnemonic Code 83
4-4-3 Ladder InStructionsc..iiuiiniiinii i 84
4-4-4 OUTPUT and OUTPUT NOT i 87
4-4-5 The END INStructionttt 87
4-4-6 Logic Block Instructionsottt 88
4-4-7 Coding Multiple Right-hand Instructions 95
4-5 The Programming Consoleo.iiniiiinin i 95
4-5-1 The Keyboard i e e 95
4-5-2 0 PCMOAES . . .oee et e 98
4-5-3 The Display Message Switch i 98
4-6 Preparation for Operationttt e 98
4-6-1 Entering the Password i 99
4-6-2 BUZZET . ..ot 99
4-6-3 Clearing MEeMOTY . . .ottt ittt et et e e 100
4-6-4 Registeringthe /O Table i 103
4-6-5 Clearing Error MeSSages oovtvt ittt et ee e 104
4-6-6 Verifyingthe /O Table i 104
4-6-7 Readingthe [/OTable i 106
4-6-8 Clearingthe /O Table i 108
4-6-9 SYSMAC NET Link Table Transfer 109
4-7 Inputting, Modifying, and Checking the Program 111
4-7-1 Setting and Reading from Program Memory Address 111
4-7-2 Entering and Editing Programs i 112
4-7-3 Checking the Program i 115
4-7-4 Displayingthe Cycle Time i 117
4-7-5 Program Searches 118
4-7-6 Inserting and Deleting Instructionsc..oiiiiuninneen ... 119
4-7-7 Branching Instruction Lines 122
4-T-8 JUMPS . oo 126
4-8 Controlling Bit Status 127
4-8-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN 128
4-8-2 KEEP ... 128
4-8-3 Self-maintaining Bits (Seal) 128
4-9 Work Bits (Internal Relays) 129
4-10 Programming Precautionsttt 131
4-11 Program EXecCutionttt e e 133
4-12 Special I/O Unit Interface Programs, 133
4-12-1 Restarting Special /O Units i 133
4-12-2 Special I/O Unit Error Processing Program 134
4-12-3 Changing the Special I/O Unit Settingso, 134

79

80

4-13

4-12-4 Special I/O Unit I/O Refreshing Interval
4-12-5 Reducingthe Cycle Timet
Analog Timer Unit Programming

4-13-1 Operation

4-13-2 Bit Allocation and DIP Switch Settings

4-13-3 Example Program

135
136
137
137
138
139

Instruction Terminology

Section 4-2

4-1 Basic Procedure

1,2 3.

There are several basic steps involved in writing a program. Sheets that can be
copied to aid in programming are provided in Appendix F Word Assignment Re-
cording Sheets and Appendix G Program Coding Sheet.

1. Obtain a list of all I/O devices and the I/O points that have been assigned to
them and prepare a table that shows the 1/O bit allocated to each I/O device.

2. If the PC has any Units that are allocated words in data areas other than the
IR area or are allocated IR words in which the function of each bit is specified
by the Unit, prepare similar tables to show what words are used for which
Units and what function is served by each bit within the words. These Units
include Special I/0 Units and Link Units.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can allo-
cate these as you use them. Remember, the function of a TC number can be
defined only once within the program; jump numbers 01 through 99 can be
used only once each. (TC numbers are described in 5-14 Timer and Counter
Instructions; jump numbers are described later in this section.)

5. Draw the ladder diagram.

6. Input the program into the CPU Unit. When using the Programming Con-
sole, this will involve converting the program to mnemonic form.

7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.

9. After the entire Control System has been installed and is ready for use, exe-
cute the program and fine tune it if required.

10. Make a backup copy of the program.

The basics of ladder-diagram programming and conversion to mnemonic code
are described in 4-4 Basic Ladder Diagrams. Preparing for and inputting the pro-
gram via the Programming Console are described in 4-5 The Programming
Console through 4-7 Inputting, Modifying, and Checking the Program. The rest
of Section 4 covers more advanced programming, programming precautions,
and program execution. All special application instructions are covered in Sec-
tion 5 Instruction Set. Debugging is described in Section 7 Program Monitoring
and Execution. Section 9 Troubleshooting also provides information required for
debugging.

4-2 Instruction Terminology

There are basically two types of instructions used in ladder-diagram program-
ming: instructions that correspond to the conditions on the ladder diagram and
are used in instruction form only when converting a program to mnemonic code
and instructions that are used on the right side of the ladder diagram and are
executed according to the conditions on the instruction lines leading to them.

Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values, but are usually the ad-
dresses of data area words or bits that contain the data to be used. For instance,
a MOVE instruction that has IR 000 designated as the source operand will move
the contents of IR 000 to some other location. The other location is also desig-
nated as an operand. A bit whose address is designated as an operand is called
an operand bit; a word whose address is designated as an operand is called an
operand word. If the actual value is entered as a constant, it is preceded by # to
indicate that it is not an address.

81

Basic Ladder Diagrams

Section 4-4

Other terms used in describing instructions are introduced in Section 5 Instruc-
tion Set.

4-3 Program Capacity

The maximum user program size varies with the amount of UM allocated to ex-
pansion DM and the I/O Comment Area. Approximately 10.1 KW are available
for the ladder program when 3 KW are allocated to expansion DM and 2 KW are
allocated to /O comments as shown below. Refer to the 3-10 UM Area for further
information on UM allocation.

DM DM DM DM DM
6144 6600 6655 7000 9999
! !
PC Reserved| Expansion I/O Comment | Ladder program
Setup DM Area Area
! !
Variable size

Fixed DM Area Ladder Program Area (15.1 KW)

4-4 Basic Ladder Diagrams

82

Note

A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the branching
lines, instruction lines or rungs. Along the instruction lines are placed conditions
that lead to other instructions on the right side. The logical combinations of these
conditions determine when and how the instructions at the right are executed. A
ladder diagram is shown below.

00000 06315 25208 HR 0109 LR 2503 24400 24401
L 1L)4 LK 1L ;
I 11 v di ydi 11 : Instruction I
00001 00501 00502 00503 00504
1L)4)4)4)4
LAl Al Al Al Al
00100 00002 00003 HR 0050 00007 TIM 001 LR 0515 00403 00405
L 1L :
I 11 : Instruction I
00010 21001 21002
1L)4)4
LAl Al Al
00011 21005 21007
1L)4)4
LAl Al Al

As shown in the diagram above, instruction lines can branch apart and they can
join back together. The vertical pairs of lines are called conditions. Conditions
without diagonal lines through them are called normally open conditions and
correspond to a LOAD, AND, or OR instruction. The conditions with diagonal
lines through them are called normally closed conditions and correspond to a
LOAD NOT, AND NOT, or OR NOT instruction. The number above each condi-
tion indicates the operand bit for the instruction. It is the status of the bit asso-
ciated with each condition that determines the execution condition for following
instructions. The way the operation of each of the instructions corresponds to a
condition is described below. Before we consider these, however, there are
some basic terms that must be explained.

When displaying ladder diagrams with SYSMAC-CPT Support Software, a sec-
ond bus bar will be shown on the right side of the ladder diagram and will be con-
nected to all instructions on the right side. This does not change the ladder-dia-
gram program in any functional sense. No conditions can be placed between the

Basic Ladder Diagrams

Section 4-4

4-4-1 Basic Terms

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

instructions on the right side and the right bus bar, i.e., all instructions on the right
must be connected directly to the right bus bar. Refer to the SYSMAC-CPT Sup-
port Software Operation Manual for details.

Each condition in a ladder diagram is either ON or OFF depending on the status
of the operand bit that has been assigned to it. A normally open condition is ON if
the operand bit is ON; OFF if the operand bit is OFF. A normally closed condition
is ON if the operand bit is OFF; OFF if the operand bit is ON. Generally speaking,
you use a normally open condition when you want something to happen when a
bit is ON, and a normally closed condition when you want something to happen
when a bit is OFF.

Instruction is executed
when IR bit 00000 is ON.

1l Instruction
Normally open

0

condition

iy Inetruction Instruction is executed

A1 when IR bit 00000 is OFF.
Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF condi-
tions before an instruction determines the compound condition under which the
instruction is executed. This condition, which is either ON or OFF, is called the
execution condition for the instruction. All instructions other than LOAD instruc-
tions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in the
IR, SR, HR, AR, LR, or TC areas. This means that the conditions in a ladder dia-
gram can be determined by I/O bits, flags, work bits, timers/counters, etc. LOAD
and OUTPUT instructions can also use TR area bits, but they do so only in spe-
cial applications. Refer to 4-7-7 Branching Instruction Lines for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is called a
logic block. Although ladder diagrams can be written without actually analyzing
individual logic blocks, understanding logic blocks is necessary for efficient pro-
gramming and is essential when programs are to be input in mnemonic code.

4-4-2 Mnemonic Code

Program Memory Structure

The ladder diagram cannot be directly input into the PC via a Programming Con-
sole; SYSMAC-CPT Support Software is required. To input from a Programming
Console, it is necessary to convert the ladder diagram to mnemonic code. The
mnemonic code provides exactly the same information as the ladder diagram,
but in a form that can be typed directly into the PC. Actually you can program
directly in mnemonic code, although it in not recommended for beginners or for
complex programs. Also, regardless of the Programming Device used, the pro-
gram is stored in memory in mnemonic form, making it important to understand
mnemonic code.

Because of the importance of the Programming Console as a Programming De-
vice and because of the importance of mnemonic code in complete understand-
ing of a program, we will introduce and describe the mnemonic code along with
the ladder diagram. Remember, you will not need to use the mnemonic code if
you are inputting via SYSMAC-CPT Support Software (although you can use it
with the support software too, if you prefer).

The program is input into addresses in Program Memory. Addresses in Program
Memory are slightly different to those in other memory areas because each ad-

83

Basic Ladder Diagrams

Section 4-4

dress does not necessarily hold the same amount of data. Rather, each address
holds one instruction and all of the definers and operands (described in more
detail later) required for that instruction. Because some instructions require no
operands, while others require up to three operands, Program Memory address-
es can be from one to four words long.

Program Memory addresses start at 00000 and run until the capacity of Program
Memory has been exhausted. The first word at each address defines the instruc-
tion. Any definers used by the instruction are also contained in the first word.
Also, if an instruction requires only a single bit operand (with no definer), the bit
operand is also programmed on the same line as the instruction. The rest of the
words required by an instruction contain the operands that specify what data is
to be used. When converting to mnemonic code, all but ladder diagram instruc-
tions are written in the same form, one word to a line, just as they appear in the
ladder diagram symbols. An example of mnemonic code is shown below. The
instructions used in it are described later in the manual.

Address | Instruction Operands
00000 LD HR 0001
00001 AND 00001
00002 OR 00002
00003 LD NOT 00100
00004 | AND 00101
00005 | AND LD 00102
00006 MOV(021)

000
DM 0000
00007 CMP(020)
DM 0000
HR 00
00008 LD 25505
00009 | OUT 00501
00010 MOV(021)
DM 0000
DM 0500
00011 DIFU(013) 00502
00012 AND 00005
00013 | OUT 00503

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the operand column is left
blank for first line. It is a good idea to cross through any blank data column
spaces (for all instruction words that do not require data) so that the data column
can be quickly scanned to see if any addresses have been left out.

When programming, addresses are automatically displayed and do not have to
be input unless for some reason a different location is desired for the instruction.
When converting to mnemonic code, it is best to start at Program Memory ad-
dress 00000 unless there is a specific reason for starting elsewhere.

4-4-3 Ladder Instructions

84

The ladder instructions are those instructions that correspond to the conditions
on the ladder diagram. Ladder instructions, either independently or in combina-
tion with the logic block instructions described next, form the execution condi-
tions upon which the execution of all other instructions are based.

Basic Ladder Diagrams

Section 4-4

LOAD and LOAD NOT

AND and AND NOT

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instruction requires
one line of mnemonic code. “Instruction” is used as a dummy instruction in the
following examples and could be any of the right-hand instructions described lat-
er in this manual.

00000
A LOADIiInstruction. """ | Address | Instruction Operands
00000 LD 00000
00000 00001 Instruction
W --- [T00002 | LDNOT 00000
A LOAD NOT instruction. 00003 | Instruction

When this is the only condition on the instruction line, the execution condition for
the instruction at the right is ON when the condition is ON. For the LOAD instruc-
tion (i.e., a normally open condition), the execution condition will be ON when IR
00000 is ON; for the LOAD NOT instruction (i.e., a normally closed condition), it
will be ON when 00000 is OFF.

When two or more conditions lie in series on the same instruction line, the first
one corresponds to a LOAD or LOAD NOT instruction; and the rest of the condi-
tions correspond to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

00000 00100 LR 0000
Il Y4]l

1T M 11 : Instructlonl

Address | Instruction Operands
00000 LD 00000
00001 AND NOT 00100
00002 | AND LR 0000
00003 Instruction

The instruction will have an ON execution condition only when all three condi-
tions are ON, i.e., when IR 00000 is ON, IR 00100 is OFF, and LR 0000 is ON.

AND instructions in series can be considered individually, with each taking the
logical AND of the execution condition (i.e., the total of all conditions up to that
point) and the status of the AND instruction’s operand bit. If both of these are ON,
an ON execution condition will be produced for the next instruction. If either is
OFF, the result will also be OFF. The execution condition for the first AND in-
struction in a series is the first condition on the instruction line.

Each AND NOT instruction in series takes the logical AND of its execution condi-
tion and the inverse of its operand bit.

85

Basic Ladder Diagrams

Section 4-4

OR and OR NOT

Combining AND and OR
Instructions

86

When two or more conditions lie on separate instruction lines which run in paral-
lel and then join together, the first condition corresponds to a LOAD or LOAD
NOT instruction; the other conditions correspond to OR or OR NOT instructions.
The following example shows three conditions which correspond (in order from
the top) to a LOAD NOT, an OR NOT, and an OR instruction. Again, each of
these instructions requires one line of mnemonic code.

00000
}f : Instructionl
00100
Y4
Al
LR 0000
11
Al
Address | Instruction Operands
00000 LD NOT 00000
00001 OR NOT 00100
00002 OR LR 0000
00003 Instruction

The instruction will have an ON execution condition when any one of the three
conditions is ON, i.e., when IR 00000 is OFF, when IR 00100 is OFF, or when LR
0000 is ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruction’s
operand bit. If either one of these were ON, an ON execution condition will be
produced for the next instruction.

When AND and OR instructions are combined in more complicated diagrams,
they can sometimes be considered individually, with each instruction performing
a logic operation on the execution condition and the status of the operand bit.
The following is one example. Study this example until you are convinced that
the mnemonic code follows the same logic flow as the ladder diagram.

00000 00001 00002 00003

l__l I }r : Instruction I

00200

Address | Instruction Operands
00000 LD 00000
00001 AND 00001
00002 OR 00200
00003 | AND 00002
00004 | AND NOT 00003
00005 Instruction

Here, an AND is taken between the status of IR 00000 and that of IR 00001 to
determine the execution condition for an OR with the status of IR 00200. The
result of this operation determines the execution condition for an AND with the
status of IR 00002, which in turn determines the execution condition for an AND
with the inverse (i.e., and AND NOT) of the status of IR 00003.

In more complicated diagrams, however, it is necessary to consider logic blocks
before an execution condition can be determined for the final instruction, and
that's where AND LOAD and OR LOAD instructions are used. Before we consid-
er more complicated diagrams, however, we’ll look at the instructions required to
complete a simple “input-output” program.

Basic Ladder Diagrams Section 4-4

4-4-4 OUTPUT and OUTPUT NOT

The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the execu-
tion condition. With the OUTPUT instruction, the operand bit will be turned ON
as long as the execution condition is ON and will be turned OFF as long as the
execution condition is OFF. With the OUTPUT NOT instruction, the operand bit
will be turned ON as long as the execution condition is OFF and turned OFF as
long as the execution condition is ON. These appear as shown below. In mne-
monic code, each of these instructions requires one line.

0(|)(|JOO @ Address | Instruction Operands
L 00000 LD 00000
00001 ouT 00200
00001 Q
i} 00201 Address | Instruction Operands
00000 LD 00001
00001 OUT NOT 00201

In the above examples, IR 00200 will be ON as long as IR 00000 is ON and IR
00201 will be OFF as long as IR 00001 is ON. Here, IR 00000 and IR 00001 will
be input bits and IR 00200 and IR 00201 output bits assigned to the Units con-
trolled by the PC, i.e., the signals coming in through the input points assigned IR
00000 and IR 00001 are controlling the output points assigned IR 00200 and IR
00201, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with TIMER instructions. Refer to Exam-
ples under 5-14-1 TIMER — TIM for details.

4-4-5 The END Instruction

The last instruction required to complete a simple program is the END instruc-
tion. When the CPU Unit cycles the program, it executes all instruction up to the
first END instruction before returning to the beginning of the program and begin-
ning execution again. Although an END instruction can be placed at any point in
a program, which is sometimes done when debugging, no instructions past the
first END instruction will be executed until it is removed. The number following
the END instruction in the mnemonic code is its function code, which is used
when inputted most instruction into the PC. These are described later. The END
instruction requires no operands and no conditions can be placed on the same
instruction line with it.

! 00000 00001
: : }‘I’ : Instruction I
END(00T) Program execution
ends here.
Address | Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 Instruction

00003 END(001)

If there is no END instruction anywhere in the program, the program will not be
executed at all.

87

Basic Ladder Diagrams

Section 4-4

Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basic and go onto inputting the pro-
gram into the PC, let’s look at logic block instruction (AND LOAD and OR LOAD),
which are sometimes necessary even with simple diagrams.

4-4-6 Logic Block Instructions

AND LOAD

88

Logic block instructions do not correspond to specific conditions on the ladder
diagram; rather, they describe relationships between logic blocks. The AND
LOAD instruction logically ANDs the execution conditions produced by two logic
blocks. The OR LOAD instruction logically ORs the execution conditions pro-
duced by two logic blocks.

Although simple in appearance, the diagram below requires an AND LOAD in-
struction.

11 A
L e e == L e e ==
Address | Instruction Operands
00000 LD 00000
00001 OR 00001
00002 LD 00002
00003 | ORNOT 00003
00004 | AND LD
00005 Instruction

The two logic blocks are indicated by dotted lines. Studying this example shows
that an ON execution condition will be produced when: either of the conditions in
the left logic block is ON (i.e., when either IR 00000 or IR 00001 is ON), and
when either of the conditions in the right logic block is ON (i.e., when either IR
00002 is ON or IR 00003 is OFF).

The above ladder diagram cannot, however, be converted to mnemonic code
using AND and OR instructions alone. If an AND between IR 00002 and the re-
sults of an OR between IR 00000 and IR 00001 is attempted, the OR NOT be-
tween IR 00002 and IR 00003 is lost and the OR NOT ends up being an OR NOT
between just IR 00003 and the result of an AND between IR 00002 and the first
OR. What we need is a way to do the OR (NOT)’s independently and then com-
bine the results.

To do this, we can use the LOAD or LOAD NOT instruction in the middle of an
instruction line. When LOAD or LOAD NOT is executed in this way, the current
execution condition is saved in a special buffer and the logic process is re-
started. To combine the results of the current execution condition with that of a
previous “unused” execution condition, an AND LOAD or an OR LOAD instruc-
tion is used. Here “LOAD” refers to loading the last unused execution condition.
An unused execution condition is produced by using the LOAD or LOAD NOT
instruction for any but the first condition on an instruction line.

Basic Ladder Diagrams

Section 4-4

OR LOAD

Logic Block Instructions in
Series

Analyzing the above ladder diagram in terms of mnemonic instructions, the con-
dition for IR 00000 is a LOAD instruction and the condition below it is an OR in-
struction between the status of IR 00000 and that of IR 00001. The condition at
IR 00002 is another LOAD instruction and the condition below is an OR NOT
instruction, i.e., an OR between the status of IR 00002 and the inverse of the
status of IR 00003. To arrive at the execution condition for the instruction at the
right, the logical AND of the execution conditions resulting from these two blocks
will have to be taken. AND LOAD does this. The mnemonic code for the ladder
diagram is shown below. The AND LOAD instruction requires no operands of its
own, because it operates on previously determined execution conditions. Here
too, dashes are used to indicate that no operands needs designated or input.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition will be produced for
the instruction at the right either when IR 00000 is ON and IR 00001 is OFF, or
when IR 00002 and IR 00003 are both ON. The operation of the OR LOAD in-
struction and its mnemonic code are exactly the same as that for an AND LOAD
instruction, except that the current execution condition is ORed with the last un-
used execution condition.

L]
. o002 00003
|1]l
LY N
Address | Instruction Operands

00000 | LD 00000
00001 AND NOT 00001
00002 LD 00002
00003 | AND 00003
00004 | ORLD
00005 Instruction

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to code
the first condition, and then AND LOAD or OR LOAD is used to logically combine
the blocks. With both AND LOAD and OR LOAD there are two ways to achieve
this. One is to code the logic block instruction after the first two blocks and then
after each additional block. The other is to code all of the blocks to be combined,
starting each block with LOAD or LOAD NOT, and then to code the logic block
instructions which combine them. In this case, the instructions for the last pair of
blocks should be combined first, and then each preceding block should be com-
bined, working progressively back to the first block. Although either of these
methods will produce exactly the same result, the second method, that of coding
all logic block instructions together, can be used only if eight or fewer blocks are
being combined, i.e., if seven or fewer logic block instructions are required.

89

Basic Ladder Diagrams Section 444
The following diagram requires AND LOAD to be converted to mnemonic code
because three pairs of parallel conditions lie in series. The two options for coding
the programs are also shown.

00000 00002 00004
L 1K 11
— | vl Il 00500
00001 00003 00005
_}V 11 11
| [} [}
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00000 LD 00000
00001 OR NOT 00001 00001 OR NOT 00001
00002 LD NOT 00002 00002 LD NOT 00002
00003 OR 00003 00003 OR 00003
00004 AND LD — 00004 LD 00004
00005 LD 00004 00005 OR 00005
00006 OR 00005 00006 AND LD —
00007 AND LD — 00007 AND LD —
00008 ouT 00500 00008 ouT 00500
Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.
The following diagram requires OR LOAD instructions to be converted to mne-
monic code because three pairs of series conditions lie in parallel to each other.
00000 00001
_| H r 00501
00002 00003
00040 00005
The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can be
coded first, followed by OR LOAD, the last block, and another OR LOAD; or the
three blocks can be coded first followed by two OR LOADs. The mnemonic
codes for both methods are shown below.
Address | Instruction Operands Address | Instruction Operands
00000 | LD 00000 00000 | LD 00000
00001 | AND NOT 00001 00001 | AND NOT 00001
00002 | LD NOT 00002 00002 | LD NOT 00002
00003 | AND NOT 00003 00003 | AND NOT 00003
00004 | ORLD — 00004 | LD 00004
00005 | LD 00004 00005 | AND 00005
00006 | AND 00005 00006 | ORLD —
00007 | ORLD — 00007 | ORLD —
00008 | OUT 00501 00008 | OUT 00501

Combining AND LOAD and

OR LOAD

90

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.

Both of the coding methods described above can also be used when using AND
LOAD and OR LOAD, as long as the number of blocks being combined does not
exceed eight.

Basic Ladder Diagrams

Section 4-4

The following diagram contains only two logic blocks as shown. It is not neces-
sary to further separate block b components, because it can be coded directly
using only AND and OR.

00000 00001 00002 00003
HV l|_|l 00501
| | |

00201
]l
L]

00004

|1
I

Block Block
a b

Address | Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD 00002
00003 AND 00003
00004 OR 00201
00005 OR 00004
00006 AND LD —
00007 ouT 00501

Although the following diagram is similar to the one above, block b in the diagram
below cannot be coded without separating it into two blocks combined with OR
LOAD. In this example, the three blocks have been coded first and then OR
LOAD has been used to combine the last two blocks, followed by AND LOAD to
combine the execution condition produced by the OR LOAD with the execution
condition of block a.

When coding the logic block instructions together at the end of the logic blocks
they are combining, they must, as shown below, be coded in reverse order, i.e.,
the logic block instruction for the last two blocks is coded first, followed by the
one to combine the execution condition resulting from the first logic block in-
struction and the execution condition of the logic block third from the end, and on
back to the first logic block that is being combined.

I‘_Block_.l
b1 Address | Instruction Operands
00000 00001 00002 00003 00000 LD NOT 00000
e (=) Fasor{a s
00004 00202 00002 LD 00002
} 00003 | AND NOT 00003
Blook 00004 LD NOT 00004
|‘— b2 00005 | AND 00202
00006 | ORLD —
Block Block 00007 AND LD —
| 2 | b 00008 | OUT 00502

Complicated Diagrams

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and then
continue breaking the large blocks down until logic blocks that can be coded
without logic block instructions have been formed. These blocks are then coded,
combining the small blocks first, and then combining the larger blocks. Either
AND LOAD or OR LOAD is used to combine the blocks, i.e., AND LOAD or OR
LOAD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition, from
logic blocks, or from previous logic block instructions.

91

Basic Ladder Diagrams

Section 4-4

92

Block Block,
al b1

When working with complicated diagrams, blocks will ultimately be coded start-
ing at the top left and moving down before moving across. This will generally
mean that, when there might be a choice, OR LOAD will be coded before AND
LOAD.

The following diagram must be broken down into two blocks and each of these
then broken into two blocks before it can be coded. As shown below, blocks a
and b require an AND LOAD. Before AND LOAD can be used, however, OR
LOAD must be used to combine the top and bottom blocks on both sides, i.e., to
combine a1l and a2; b1 and b2.

Address | Instruction Operands
00000 00001 00004 00005 00000 LD 00000
)4 | L
| | I | | | I 00503 00001 AND NOT 00001
00002 LD NOT 00002
00002 00003 00006 00007
: h : 00003 AND 00003
! ! ! Blocks a1 and a2 00004 ORLD —
Blozck Blbo2ck 00005 LD 00004
| @ | | | 00006 | AND 00005
00007 LD 00006
Block Block
|‘— a —’l‘— b —’l 00008 AND 00007
Blocks b1 and b2 00009 OR LD —
Blocks a and b 00010 AND LD —
00011 ouT 00503

The following type of diagram can be coded easily if each block is coded in order:
first top to bottom and then left to right. In the following diagram, blocks a and b
would be combined using AND LOAD as shown above, and then block ¢ would be
coded and a second AND LOAD would be used to combined it with the execution
condition from the first AND LOAD. Then block d would be coded, a third AND
LOAD would be used to combine the execution condition from block d with the
execution condition from the second AND LOAD, and so on through to block n.

|—|I|—||——||—| ----- E|—|
e [i

Block Block Block . Block
a b c T n

Basic Ladder Diagrams Section 4-4

The following diagram requires an OR LOAD followed by an AND LOAD to code
the top of the three blocks, and then two more OR LOADs to complete the mne-

monic code.
o?(:oo 0??01 O Address | Instruction Operands
11 11 LR 0000
00000 | LD 00000
0002 owow 00001 | LD 00001
60004 00005 00002 | LD 00002
2 I} 00003 | AND NOT 00003
00006 00007 00004 ORLD _
i I} 00005 | ANDLD —
00006 | LD NOT 00004
00007 | AND 00005
00008 | ORLD —
00009 | LD NOT 00006
00010 | AND 00007
00011 | ORLD —
00012 | ouT LR 0000
Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND LOAD,
simplifying the program and saving memory space.
00002 00003 00000 Address | Instruction Operands
— | W 1 @ 00000 | LD 00002
00001 00001 AND NOT 00003
— 00002 | OR 00001
0<|>(i94 o?(:os 00003 AND 00000
Pl 11 00004 | LD NOT 00004
00006 00007 00005 | AND 00005
Al 1 00006 | ORLD —
00007 | LD NOT 00006
00008 | AND 00007
00009 | ORLD —
00010 | OUT LR 0000
The following diagram requires five blocks, which here are coded in order before
using OR LOAD and AND LOAD to combine them starting from the last two
blocks and working backward. The OR LOAD at program address 00008 com-
bines blocks blocks d and e, the following AND LOAD combines the resulting
execution condition with that of block c, etc.
00000 00001 00002 Address | Instruction Operands
1} | —I @ 00000 | LD 00000
—— | F— soxo—] 00001 | LD 00001
Block a 00002 | AND 00002
00003 | LD 00003
Bmkc_.l |._ Bmkd_'l 00004 | AND 00004
00003 00004 00005 00005 | LD 00005
I I I 00006 | LD 00006
00007 | AND 00007
09006 0007 Blocks d and e 00008 OR LD —
Block ¢ with result of above 00009 AND LD —
|‘_ Block e—l Block b with result of above 00010 ORLD —
Block a with result of above 00011 AND LD —
00012 | ouTt LR 0000

93

Basic Ladder Diagrams Section 4-4
Again, this diagram can be redrawn as follows to simplify program structure and
coding and to save memory space.

00006 00007 00003 00004 00000 Address | Instruction Operands
— | 1 1 1 {| @ 00000 | LD 00006
00005 00001 AND 00007
— 00002 | OR 00005
00001 00002 00003 | AND 00003
1 1 00004 | AND 00004
00005 | LD 00001
00006 | AND 00002
00007 | ORLD —
00008 | AND 00000
00009 | OUT LR 0000
The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as follows:

Block a

r- - - - -1
, 00000 00001, 00002 00003 , 00004 00005,

1 1L 11 1K 1L 11
AT T 1
, 01000 01001 1 00006 !

) I]
....... -))
00500 N !

Block b

00500

Block ¢

The first logic block instruction is used to combine the execution conditions re-
sulting from blocks a and b, and the second one is to combine the execution con-
dition of block ¢ with the execution condition resulting from the normally closed
condition assigned IR 00003. The rest of the diagram can be coded with OR,
AND, and AND NOT instructions. The logical flow for this and the resulting code
are shown below.

Block a Block b

00000

LD
AND

—

00001
l_

00000
00001

01000

—

LD
AND

01001
l_

01000
01001

|—ORLDQ
|

Block ¢

_Oi)SOO

OR 00500

00002 00003

AND 00002
AND NOT 00003

00004 00005

LD
AND

00004
00005

00006

——

LD 00006

|_AND LDQ

|

94

Address | Instruction Operands
00000 LD 00000
00001 AND 00001
00002 LD 01000
00003 | AND 01001
00004 OR LD —
00005 OR 00500
00006 | AND 00002
00007 | AND NOT 00003
00008 LD 00004
00009 | AND 00005
00010 OR 00006
00011 AND LD —
00012 ouT 00500

The Programming Console

Section 4-5

4-4-7 Coding Multiple Right-hand Instructions

00003

If there is more than one right-hand instruction executed with the same execu-
tion condition, they are coded consecutively following the last condition on the
instruction line. In the following example, the last instruction line contains one
more condition that corresponds to an AND with IR 00004.

HR 0000

@ Address | Instruction Operands
- 00000 | LD 00000
00001 OR 00001
@ 00002 | OR 00002
00004 00003 | OR HR 0000
: : @ 00004 | AND 00003
00005 | OUT HR 0001
00006 | OUT 00500
00007 | AND 00004
00008 | OUT 00506

4-5 The Programming Console

1,2, 3.

Note

4-5-1 The Keyboard

White: Numeric Keys

Red: CLR Key

This and the next section describe the Programming Console and the opera-
tions necessary to prepare for program input. 4-7 Inputting, Modifying, and
Checking the Program describes actual procedures for inputting the program
into memory.

Although the Programming Console can be used to write ladder programs, it is
primarily used to support SYSMAC-CPT Support Software operations and is
very useful for on-site editing and maintenance. The main Programming Con-
sole functions are listed below.

1. Displaying operating messages and the results of diagnostic checks.

2. Writing and reading ladder programs, inserting and deleting instructions,
searching for data or instructions, and monitoring 1/O bit status.

3. Monitoring I/O status, force-setting/resetting bits.

4. The Programming Console can be connected to or disconnected from the
PC with the power ON.

5. The Programming Console can be used with C-series PCs.

6. Supports TERMINAL mode, which allows the display of a 32-character

message, as well as operation of the keyboard mapping function. Refer to
5-26-6 TERMINAL MODE — TERM/(048) for details.

The Programming Console does not support all of the SYSMAC-CPT Support
Software operations, only those required for on-site editing and maintenance.

The keyboard of the Programming Console is functionally divided by key color
into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions with
function codes.

The numeral keys 0 to 5 are also pressed after the SHIFT key to input hexadeci-
mal numerals A to F.

The CLR key clears the display and cancels current Programming Console op-
erations. It is also used when you key in the password at the beginning of pro-
gramming operations. Any Programming Console operation can be cancelled

95

The Programming Console

Section 4-5

Yellow: Operation Keys

Gray: Instruction and Data
Area Keys

96

by pressing the CLR key, although the CLR key may have to be pressed two or
three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed explana-
tions of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input in-
structions and designate data area prefixes when inputting or changing a pro-
gram. The SHIFT key is similar to the shift key of a typewriter, and is used to alter
the function of the next key pressed. (It is not necessary to hold the SHIFT key
down; just press it once and then press the key to be used with it.)

The Programming Console

Section 4-5

The gray keys other than the SHIFT key have either the mnemonic name of the
instruction or the abbreviation of the data area written on them. The functions of
these keys are described below.

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).
Input either after a function code to designate the differentiated

form of an instruction or after a ladder instruction to designate
an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.
Pressed before designating an address in the TR area.
Pressed before designating an address in the LR area.
Pressed before designating an address in the HR area.
Pressed before designating an address in the AR area.
Pressed before designating an address in the DM area.
Pressed before designating an address in the EM area.
Pressed before designating an indirect DM address.
Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

Pressed to select either the upper or lower function for keys
that have two functions. Pressing this key once selects the
upper function, and pressing it again selects the lower function.
Selects expanded functions when used in combination with
other keys. Pressed before the numeric keys 0 to 5 to input the
hexadecimal numerals A to F.

97

Preparation for Operation

Section 4-6

4-5-2 PC Modes

&Caution

The Programming Console is equipped with a switch to control the PC mode. To
select one of the three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. The mode that you select will determine PC operation as
well as the procedures that are possible from the Programming Console.

RUN mode is the mode used for normal program execution. When the switch is
set to RUN and the START input on the CPU Power Supply Unit is ON, the CPU
Unit will begin executing the program according to the program written in its Pro-
gram Memory. Although monitoring PC operation from the Programming Con-
sole is possible in RUN mode, no data in any of the memory areas can be input or
changed.

MONITOR mode allows you to visually monitor in-progress program execution
while controlling I/O status, changing PV (present values) or SV (set values),
etc. In MONITOR mode, I/O processing is handled in the same way as in RUN
mode. MONITOR mode is generally used for trial system operation and final pro-
gram adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM mode
is for creating and changing programs, clearing memory areas, and registering
and changing the 1/O table. A special Debug operation is also available within
PROGRAM mode that enables checking a program for correct execution before
trial operation of the system.

Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise picked up by the extension cable can enter the
PC, affecting the program and thus the controlled system.

4-5-3 The Display Message Switch

Pin 3 of the CPU Unit’s DIP switch determines whether Japanese or English lan-
guage messages will be displayed on the Programming Console. It is factory set
to ON, which causes English language messages to be displayed.

4-6 Preparation for Operation

98

&Caution

1,2, 3.

This section describes the procedures required to begin Programming Console
operation. These include password entry, clearing memory, error message
clearing, and I/O table operations. I/O table operations are also necessary at
other times, e.g., when changes are to be made in Units used in the PC configu-
ration.

Always confirm that the Programming Console is in PROGRAM mode when
turning ON the PC with a Programming Console connected unless another
mode is desired for a specific purpose. If the Programming Console is in RUN
mode when PC power is turned ON, any program in Program Memory will be
executed, possibly causing a PC-controlled system to begin operation.

The following sequence of operations must be performed before beginning in-
itial program input.
1. Insert the mode key into the Programming Console.

2. Set the mode switch to PROGRAM mode. (The mode key cannot be re-
moved while set to PROGRAM mode.)

3. Turn ON PC power.

Note When I/O Units are installed, turn ON those Units also. The Program-
ming Console will not operate if these Units are not turned ON.

Preparation for Operation

Section 4-6

4. Confirm that the CPU Unit's POWER LED is lit and the following display ap-
pears on the Programming Console screen. (If the PC mode is not dis-
played, turn OFF and restart the power supply. If the ALM/ERR LED is lit or
flashing or an error message is displayed, clear the error that has occurred.)

5. Enter the password. See 4-6-1 Entering the Password for details.

6. Clear memory. Skip this step if the program does not need to be cleared.
See 4-6-3 Clearing Memory for details.

4-6-1 Entering the Password

4-6-2 Buzzer

To gain access to the PC’s programming functions, you must first enter the pass-
word. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned ON or, if PC power
is already ON, after the Programming Console has been connected to the PC.
To gain access to the system when the “Password!” message appears, press
CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is already
ON, the first display below will indicate the mode the PC was in before the Pro-
gramming Console was connected. Ensure that the PC is in PROGRAM mode
before you enter the password. When the password is entered, the PC will
shift to the mode set on the mode switch, causing PC operation to begin if the
mode is set to RUN or MONITOR. The mode can be changed to RUN or MONI-
TOR with the mode switch after entering the password.

CLR

o | I B

Indicates the mode set by the mode selector switch.

Immediately after the password is input or anytime immediately after the mode
has been changed, SHIFT and then the 1 key can be pressed to turn ON and
OFF the buzzer that sounds when Programming Console keys are pressed. If
BZ is displayed in the upper right corner, the buzzer is operative. If BZ is not dis-
played, the buzzer is not operative.

This buzzer also will also sound whenever an error occurs during PC operation.
Buzzer operation for errors is not affected by the above setting.

99

Preparation for Operation

Section 4-6

4-6-3 Clearing Memory

All Clear

100

Using the Memory Clear operation it is possible to clear all or part of the UM area
(RAM or EEPROM), and the IR, HR, AR, DM, EM and TC areas. Unless other-
wise specified, the clear operation will clear all of the above memory areas. The
UM area will not be cleared if the write-protect switch (pin 1 of the CPU Unit’s DIP
switch) is set to ON.

Before beginning to programming for the first time or when installing a new pro-
gram, all areas should normally be cleared. Before clearing memory, check to
see if a program is already loaded that you need. If you need the program, clear
only the memory areas that you do not need, and be sure to check the existing
program with the program check key sequence before using it. The check se-
quence is provided later in this section. Further debugging methods are pro-
vided in Section 7 Program Monitoring and Execution. To clear all memory areas
press CLR until all zeros are displayed, and then input the keystrokes given in
the top line of the following key sequence. The branch lines shown in the se-
quence are used only when performing a partial memory clear, which is de-
scribed below.

Memory can be cleared in PROGRAM mode only. The following table shows
which memory areas will be cleared for the 3 memory clearing operations (all
clear, partial clear, memory clear).

Memory Area All clear Partial clear Memory clear

I/O words Cleared Cleared Cleared
Work words Cleared Cleared
HR, AR, TC, DM, fixed DM Cleared Cleared Cleared
Expansion DM Cleared Cleared
EM Cleared Cleared Cleared
I/O comments Cleared

Ladder program Cleared Cleared Cleared
UM Allocation information Cleared

1. The error history area (DM 6000 to DM 6030) will not be cleared when the
DM area is cleared.

2. When the PC Setup area (DM 6600 to DM 6655 in fixed DM) is cleared, the
settings will be returned to their factory-set defaults.

3. When the All Clear operation is executed, the ladder program area will be
allocated entirely to the ladder program. (The expansion DM and 1/0O com-
ment areas will be set to 0 KW.) Also , all EM banks will be cleared.

The key sequence for all clear is shown below.

RE
CLR PLAY NOT _C EXT MONTR
SET RESET

Preparation for Operation

Section 4-6

Partial Clear

The following procedure is used to clear memory completely.

CLR

Continue pressing

the CLR key once for
—— each error message

until “00000” appears

CLR

on the display
N
CLR

—

N
PLAY |f o7
SET

—— All clear

It is possible to retain the data in specified areas or part of the ladder program. To
retain the data in the HR and AR, TC, DM, and/or EM areas, press the appropri-
ate key after entering REC/RESET. HR is pressed to designate both the HR and
AR areas. In other words, specifying that HR is to be retained will ensure that AR
is retained also. If not specified for retention, both areas will be cleared. CNT is
used for the entire TC area. Press Shift + DM to specify the EM area. The display
will show those areas that will be cleared.

It is possible to retain some EM banks and clear others. See the explanation un-
der the heading “Clearing Selected EM Banks” on page 102.

It is also possible to retain a portion of the ladder program from the beginning to a
specified address. After designating the data areas to be retained, specify the
first program address to be cleared. For example, to leave addresses 00000 to
00122 untouched, but to clear addresses from 00123 to the end of Program
Memory, input 00123.

The key sequence for a partial memory clear is shown below.

CLR PLAY NOT] :f REC] »{MONTR
SET) |Reser/ [
> [Address] —= Program Memory cleared
from designated address.

Both AR and HR areas >

TC area -

- ~ Retained if pressed

DM area L

I
EM area L—| sHIFT [

IUI Q |::|
b4
= 5]
|
|
|
1o

101

Preparation for Operation Section 4-6

To leave the TC area uncleared and retain Program Memory addresses 00000
through 00122, input as follows:

Clearing Selected EM Banks When a partial memory clear operation is being performed, specific banks can
be selected for clearing rather than selecting the entire EM area. In the following
example, EM banks 0 and 2 are selected for clearing.

The Programming Console will display the following screens:

CLR

)
%

(2]
m
=

NOT

E
RESET

DM

g
D O0E

SHIFT

Memory Clear The memory clear operation clears all memory areas except the I/O comments
and UM Allocation information.

102

Preparation for Operation Section 4-6

The Programming Console will display the following screens:

Note When the write-protect switch (pin 1 of the CPU Unit’s DIP switch) is set to ON,
the UM area (from DM 6144 through the ladder program) will not be cleared.
Other data areas, such as HR, AR, CNT, and DM from DM 0000 to DM 6143 will
be cleared.

4-6-4 Registering the I/O Table

The 1/O Table Registration operation records the types of /O Units controlled by
the PC and the Rack locations of the 1/O Units. It also clears all I/O bits.

It is not absolutely necessary to register the I/O table with a C200HX/HG/HE.
When the I/O table has not been registered, the PC will operate according to the
I/0O Units mounted when power is applied. The I/O verification/setting error will
not occur.

It is necessary to register the 1/O table if I/O Units are changed, otherwise an I/O
verification error message, “I/O VER ERR” or “I/O SET ERROR”, will appear
when starting programming operations.

I/O Table Registration can be performed only in PROGRAM mode with the write-

protection switch (pin 1 of the CPU Units DIP switch) set to OFF
(OFF="WRITE").

) e G o B e E R B S

Key Sequence

103

Preparation for Operation Section 4-6

Initial /O Table Registration

— Register I/O table

4-6-5 Clearing Error Messages

After the I/O table has been registered, any error messages recorded in memory
should be cleared. It is assumed here that the causes of any of the errors for
which error messages appear have already been taken care of. If the beeper
sounds when an attempt is made to clear an error message, eliminate the cause
of the error, and then clear the error message (refer to Section 9 Troubleshoot-
ing).

To display any recorded error messages, press CLR, FUN, and then MONTR.
The first message will appear. Pressing MONTR again will clear the present
message and display the next error message. Continue pressing MONTR until
all messages have been cleared.

Although error messages for fatal errors can be accessed in any mode, they can
be cleared only in PROGRAM mode.

Key Sequence

[o]_.[Fun]_.[Mom} - {MONTR]

4-6-6 Verifying the I/O Table

The 1/O Table Verification operation is used to check the I/O table registered in
memory to see if it matches the actual sequence of I/O Units mounted. The first
inconsistency discovered will be displayed as shown below. Every subsequent
pressing of VER displays the next inconsistency.

Note This operation can be executed only when the 1/O table has been registered.

Key Sequence

104

Preparation for Operation Section 4-6

Example
CLR
FUN
I SHIFT I cH
*
VER (No errors)
VER (A verification error occurred)
Actual I/0O words
Registered 1/0 table words
1/0 slot number
Rack number
Meaning of Displays The following display indicates a C500, C1000H, or C2000H and C200H,
C200HS, or C200HX/HG/HE have the same unit number on a Remote I/O Slave
Rack.

The following display indicates a duplication in Optical I1/0 Unit unit numbers.

L—— Indicates duplication

105

Preparation for Operation Section 4-6

4-6-7 Reading the I/O Table

The 1/O Table Read operation is used to access the 1/O table that is currently
registered in the CPU Unit memory. This operation can be performed in any PC
mode.

Key Sequence

[CLR]——[FUN HSHIFT]{ C*H] = [0to3] — [0to9] ——Ew;;}
Rack Unit
—> number number

Press the EXT key to select Remote
I/0O Slave Racks or Optical I/O Units.

Example

(Main Rack)

(Slave Rack Units)

(Optical I/0 Unit)

[o <

(Main Rack)

U R U R

[o e

m“]._[J}:

MONTR

106

Preparation for Operation Section 4-6

Meaning of Displays

I/0 Unit Designations for Displays
(see I/O Units Mounted in Remote Slave Racks, page 108)

C500, 1000H/C2000H I/0 Units
No. of points Input Unit Output Unit
1 6 3 . B s] ol 3.
32
64

C200H, C200HS I/0 Units
No. of points Input Unit Output Unit
16

Note: (*) is i for non-fatal errors or F_

I1/0 Units

-

1/0 word number

1/0 type: i: (input), o: (output)

Unit number (0 to 9)

Rack number (0 to 3)

Interrupt Input Units

I: INTO or INT1:

Mounted to CPU Unit or Expansion 1/O
Rack.

Special I/O Units

| Blank: Unit 1 exclusively
W: Unit 2 exclusively
. C: High-speed Counter
szpictlal V_O { N: Position Control Unit
nit type: A: Other
Unit number (0 to F)

Indicates Special /0 Unit

Remote I/0 Master Units

L. RemotelO

Master no. (0 or 1)

107

Preparation for Operation

Section 4-6

Remote I/O Slave Racks

I

Group-2 High-density I/O
Units

Optical I/0 Units and
Remote Terminals

4-6-8 Clearing the I/O Table

1/0 word number

/0 type: 1,0
i, 0 (see tables on previous page)

Unit number (0 to 9)
Remote I/O Slave Unit number (0 to 4)
Remote I/O Master Unit number (0 or 1)

Indicates a Remote 1/0 Rack

2: 2 words (32 points)
4: 4 words (64 points)
I: Input Unit

O: Output Unit

Unit number (0 to F)
Indicates Group-2 High-density I/0 Unit

1/0 type: | (input), O (output), or
W (input/output)

Remote I/O Master Unit number (0 to 1)
Word (H: leftmost 8 bits; L: rightmost 8 bits)

1/0 word number (200 to 231)

The 1/O Table Clear operation is used to delete the contents of the 1/O table that
is currently registered in the CPU Unit memory. The PC will be set for operation
based on the I/O Units mounted when the 1/0 Table Clear operation is per-

formed.

The 1/O Table Clear operation will reset all Special 1/0 Units and Link Units
mounted at the time. Do not perform the 1/O Table Clear operation when a Host
Link Unit, PC Link Unit, Remote I/O Master Unit, High-speed Counter Unit, Posi-
tion Control Unit, or other Special I/0 Unit is in operation.

Note This operation can be performed only in PROGRAM mode with the write-protec-
tion switch (pin 1 of the CPU Unit’s DIP switch) set to OFF (OFF="WRITE”).

108

Preparation for Operation

Section 4-6

Key Sequence

CEHE

L

Example

)

CLR

H

-
(=
4

2

]._[*

CHG

-

WRITE

[

4-6-9 SYSMAC NET Link Table Transfer

Note

The SYSMAC NET Link Table Transfer operation transfers a copy of the SYS-
MAC NET Link Data Link table to the UM Area program memory. This allows the
user program and SYSMAC NET Link table to be written into EPROM together.
The data link table must be created with the SYSMAC Support Software and
transferred to the PC before copying the table to program memory.

The data link table is stored in RAM when it is transferred to the PC from the
SYSMAC Support Software, so the table will be lost if the CPU Unit’s backup
battery dies. To prevent this loss, we recommend converting the program (with
the data link table) to EPROM or storing the program in an EEPROM Memory
Cassette.

When power is applied to a PC which has a copy of a SYSMAC NET Link table
stored in its program memory, the SYSMAC NET Link table of the CPU Unit will
be overwritten. Changes made in the SYSMAC NET Link table do not affect the
copy of the SYSMAC NET Link table in program memory; SYSMAC NET Link
Table Transfer must be repeated to change the copy in program memory.

The SYSMAC NET Link Table Transfer operation will not work if:

e The Memory Unit is not RAM or EEPROM, or the write protect switch is not set
to write.

e There isn’t an END(001) instruction.

¢ The contents of program memory exceeds 14.7 KW. The program capacity is
reduced when memory is allocated to expansion DM or the I/O comment area.
About 0.5 KW of program memory beyond the END(001) instruction are need-
ed to store the data link table.

SYSMAC NET Link table transfer can only be done in PROGRAM mode.

109

Preparation for Operation Section 4-6

Key Sequence

EHAEE R

CLR

Example

|

M

FUN

WRITE

G

The following indicates that the
I/0 table cannot be transferred.

WRITE

U:

110

Inputting, Modifying, and Checking the Program Section 4-7

4-7 Inputting, Modifying, and Checking the Program

Once a program is written in mnemonic code, it can be input directly into the PC
from a Programming Console. Mnemonic code is keyed into Program Memory
addresses from the Programming Console. Checking the program involves a
syntax check to see that the program has been written according to syntax rules.
Once syntax errors are corrected, a trial execution can begin and, finally, correc-
tion under actual operating conditions can be made.

The operations required to input a program are explained below. Operations to
modify programs that already exist in memory are also provided in this section,
as well as the procedure to obtain the current cycle time.

Before starting to input a program, check to see whether there is a program al-
ready loaded. If there is a program loaded that you do not need, clear it first using
the program memory clear key sequence, then input the new program. If you
need the previous program, be sure to check it with the program check key se-
quence and correct it as required. Further debugging methods are provided in
Section 7 Program Monitoring and Execution.

4-7-1 Setting and Reading from Program Memory Address

Key Sequence

When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when the
display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 00000 or to read or modify a
program that already exists in memory, the desired address must be designated.
To designate an address, press CLR and then input the desired address. Lead-
ing zeros of the address need not be input, i.e., when specifying an address such
as 00053 you need to enter only 53. The contents of the designated address will
not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the designated
address, the up and down keys can be used to scroll through Program Memory.
Each time one of these keys is pressed, the next or previous word in Program
Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any displayed bit will also be shown.

CLR [Address] - ¥

111

Inputting, Modifying, and Checking the Program Section 4-7

Example

(2)

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

Address | Instruction Operands
00200 LD 00000
00201 AND 00001
00202 | TIM 000

#0123
00203 LD 00100

4-7-2 Entering and Editing Programs

112

Programs can be entered and edited only in PROGRAM mode with the write-
protect switch (pin 1 of the CPU Unit’s DIP switch) set to OFF (OFF="WRITE”).

The same procedure is used to either input a program for the first time or to edit a
program that already exists. In either case, the current contents of Program
Memory is overwritten, i.e., if there is no previous program, the NOP(000) in-
struction, which will be written at every address, will be overwritten.

To enter a program, input the mnemonic code that was produced from the ladder
diagram step-by-step, ensuring that the correct address is set before starting.
Once the correct address is displayed, enter the first instruction word and press
WRITE. Next, enter the required operands, pressing WRITE after each, i.e.,
WRITE is pressed at the end of each line of the mnemonic code. When WRITE is
pressed at the end of each line, the designated instruction or operand is entered
and the next display will appear. If the instruction requires two or more words, the
next display will indicate the next operand required and provide a default value
for it. If the instruction requires only one word, the next address will be displayed.
Continue inputting each line of the mnemonic code until the entire program has
been entered.

When inputting numeric values for operands, it is not necessary to input leading
zeros. Leading zeros are required only when inputting function codes (see be-
low). When designating operands, be sure to designate the data area for all but
IR and SR addresses by pressing the corresponding data area key, and to desig-
nate each constant by pressing CONT/#. CONT/# is not required for counter or
timer SVs (see below). The AR area is designated by pressing SHIFT and then
HR. TC numbers as bit operands (i.e., completion flags) are designated by
pressing either TIM or CNT before the address, depending on whether the TC
number has been used to define a timer or a counter. To designate an indirect
DM address, press CH/+ before the address (pressing DM is not necessary for
an indirect DM address).

Inputting, Modifying, and Checking the Program Section 4-7

Inputting SV for Counters

and Timers

Designating Instructions

Key Sequence

&Caution

The SV (set value) for a timer or counter is generally entered as a constant, al-
though inputting the address of a word that holds the SV is also possible. When
inputting an SV as a constant, CONT/# is not required; just input the numeric
value and press WRITE. To designate a word, press CLR and then input the
word address as described above.

The most basic instructions are input using the Programming Console keys pro-
vided for them. All other instructions are entered using function codes. These
function codes are always written after the instruction’s mnemonic. If no function
code is given, there should be a Programming Console key for that instruction.
To designate the differentiated form of an instruction, press NOT after the func-
tion code.

To input an instruction using a function code, set the address, press FUN, input
the function code including any leading zeros, press NOT if the differentiated
form of the instruction is desired, input any bit operands or definers required for
the instruction, and then press WRITE.

Enter function codes with care and be sure to press SHIFT when required.

[Address displayed]—— [Instruction word] WRITE s [Operand]

NoT WRITE

113

Inputting, Modifying, and Checking the Program Section 4-7

Example The following program can be entered using the key inputs shown below. Dis-
plays will appear as indicated.

: Address | Instruction Operands
—__J 00200 LD 00002
00201 TIM 000

[02][Ao] "0 #0123
- 00202 TIMH(015) 000

. #0500
LD c 2
H-
| S—

114

Inputting, Modifying, and Checking the Program Section 4-7

Error Messages

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in the
displays shown below will be replaced with numeric data, normally an address,
in the actual display.

Cause and correction

Message

An attempt was made to write to write-protected RAM or EEPROM. Ensure that the
write-protect switch is set to OFF.

The instruction at the last address in memory is not NOP(000). Erase all unnecessary
instructions at the end of the program.

An address was set that is larger than the highest memory address in the UM area.
Input a smaller address

Data has been input in the wrong format or beyond defined limits, e.g., a hexadecimal
value has been input for BCD. Re-enter the data. This error will generate a FALS 00
error.

A data area address has been designated that exceeds the limit of the data area, e.g.,
an address is too large. Confirm the requirements for the instruction and re-enter the
address.

4-7-3 Checking the Program

Key Sequence

Check Levels and Error
Messages

Once a program has been entered, the syntax should be checked to verify that
no programming rules have been violated. This check should also be performed
if the program has been changed in any way that might create a syntax error.

To check the program, input the key sequence shown below. The numbers indi-
cate the desired check level (see below). When the check level is entered, the
program check will start. If an error is discovered, the check will stop and a dis-
play indicating the error will appear. Press SRCH to continue the check. If an er-
ror is not found, the program will be checked through to the first END(001), with a
display indicating when each 64 instructions have been checked (e.g., display
#1 of the example after the following table).

CLR can be pressed to cancel the check after it has been started, and a display
like display #2, in the example, will appear. When the check has reached the first
END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

CLR SRCH } - - - To check
up to END(001)

CLR To abort

sl

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be des-
ignated to indicate the type of errors that are to be detected. The following table
provides the error types, displays, and explanations of all syntax errors. Check
level 0 checks for type A, B, and C errors; check level 1, for type A and B errors;
and check level 2, for type A errors only.

The address where the error was generated will also be displayed.

115

Inputting, Modifying, and Checking the Program Section 4-7

Many of the following errors are for instructions that have not yet been described
yet. Refer to 4-8 Controlling Bit Status or to Section 5 Instruction Set for details
on these.

Type Message Meaning and appropriate response
Type A | 77 The program has been lost. Re-enter the program.

There is no END(001) in the program. Write END(001) at the final address in the
program.

The number of logic blocks and logic block instructions does not agree, i.e., either
LD or LD NOT has been used to start a logic block whose execution condition has
not been used by another instruction, or a logic block instruction has been used
that does not have the required number of logic blocks. Check your program.

An instruction is in the wrong place in the program. Check instruction requirements
and correct the program.

The same jump number or subroutine number has been used twice. Correct the
program so that the same number is only used once for each. (Jump number 00
may be used as often as required.)

SBS(091) has been programmed for a subroutine number that does not exist.
Correct the subroutine number or program the required subroutine.

A JME(004) is missing for a JMP(005). Correct the jump number or insert the
proper JME(004).

A constant entered for the instruction is not within defined values. Change the
constant so that it lies within the proper range.

STEP(008) with a section number and STEP(008) without a section number have
been used correctly. Check STEP(008) programming requirements and correct
the program.

TypeB | Ii.~ IL(002) and ILC(003) are not used in pairs. Correct the program so that each
IL(002) has a unique ILC(003). Although this error message will appear if more
than one IL(002) is used with the same ILC(003), the program will executed as

written. Make sure your program is written as desired before proceeding.

JMP(004) 00 and JME(005) 00 are not used in pairs. Although this error message
will appear if more than one JMP(004) 00 is used with the same JME(005) 00, the
program will be executed as written. Make sure your program is written as desired
before proceeding.

If the displayed address is that of SBN(092), two different subroutines have been
defined with the same subroutine number. Change one of the subroutine numbers
or delete one of the subroutines. If the displayed address is that of RET(093),
RET(093) has not been used properly. Check requirements for RET(093) and
correct the program.

JME(005) has been used with no JMP(004) with the same jump number. Add a
JMP(004) with the same number or delete the JME(005) that is not being used.

A subroutine exists that is not called by SBS(091). Program a subroutine call in the
proper place, or delete the subroutine if it is not required.

The same bit is being controlled (i.e., turned ON and/or OFF) by more than one
instruction (e.g., OUT, OUT NOT, DIFU(013), DIFD(014), KEEP(011), SFT(010)).
Although this is allowed for certain instructions, check instruction requirements to
confirm that the program is correct or rewrite the program so that each bit is
controlled by only one instruction.

Type C

116

Inputting, Modifying, and Checking the Program

Section 4-7

Example

The following example shows some of the displays that can appear as a result of

a program check.

SRCH
I SRCH

Halts program check

Check continues until END(001)

When errors are found

I SRCH

4-7-4 Displaying the Cycle Time

Once the program has been cleared of syntax errors, the cycle time should be
checked. This is possible only in RUN or MONITOR mode while the program is
being executed. See Section 6 Program Execution Timing for details on the

Example

cycle time.

Display #1

Display #2

Display #3

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in displayed
values depend on the execution conditions that exist when MONTR is pressed.

MONTR

MONTR

HIHJE

117

Inputting, Modifying, and Checking the Program Section 4-7

4-7-5 Program Searches

Key Sequence

118

The program can be searched for occurrences of any designated instruction or
data area address used in an instruction. Searches can be performed from any
currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the address,
including any data area designation required, and press SRCH. To designate an
instruction, input the instruction just as when inputting the program and press
SRCH. Once an occurrence of an instruction or bit address has been found, any
additional occurrences of the same instruction or bit can be found by pressing
SRCH again. SRCH'G will be displayed while a search is in progress.

When the first word of a multiword instruction is displayed for a search operation,
the other words of the instruction can be displayed by pressing the down key be-
fore continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any bit displayed will also be shown.

[Instruction]

[CLR]J—[SHIFT]{C(;NT} » [Address] —‘ - -

LR

HR

TIM

e

0

CNT

Inputting, Modifying, and Checking the Program Section 4-7

Example:)
Instruction Search CLR

TIM 1

Example: S
Bit Search CLR

conT | |F
[SHIFT][=]‘ 5 |

4-7-6 Inserting and Deleting Instructions

In PROGRAM mode, any instruction that is currently displayed can be deleted or
another instruction can be inserted before it. These operations are possible only
in PROGRAM mode with the write-protect switch (pin 1 of the CPU Unit’s DIP
switch) set to OFF (OFF="WRITE”").

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when in-
putting a program initially, and then press INS and the down key. If other words
are required for the instruction, input these in the same way as when inputting
the program initially.

119

Inputting, Modifying, and Checking the Program

Section 4-7

Key Sequences

Example

&Caution

To delete an instruction, display the instruction word of the instruction to be de-
leted and then press DEL and the up key. All the words for the designated in-
struction will be deleted.

Be careful not to inadvertently delete instructions; there is no way to recover
them without re-inputting them completely.

Locate position
in program

then enter: [Instruction] ————

Instruction
currently
displayed

—

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank ad-
dresses or no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address | Instruction Operands
00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 | AND NOT 00102
00004 | ORLD —
00005 AND 00103
00006 | AND NOT 00104
00007 | OUT 00201
00008 END(001) —

00100 00101
Nl Nl

Before Insertion:

00103
Nl

Before Deletion:

00104
| 00104

00201 00102

LAl *Xr

)4
Al

00100 00101 00103 00105
00201 1l 1l 1l 1l
]]]]

@

Il)4
L] Al

00105

- I

00201 00102
Y4

Al

Delete

END(001)

l END(001) I

120

The following key inputs and displays show the procedure for achieving the pro-
gram changes shown above.

Inputting, Modifying, and Checking the Program Section 4-7

Inserting an Instruction

] Find the address
— prior to the inser-

ouTt

O+ tion point
2 JCo)
.) Program After Insertion
— Address | Instruction Operands
00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 AND NOT 00102
] 00004 OR LD —
] 00005 | AND 00103
00006 AND 00105
00007 AND NOT 00104
00008 ouT 00201
00009 | END(001) —

Insert the
instruction

—] Find the instruction

ouT . .

- that requires deletion.
| S
Program After Deletion
[02][A 0] ® 1 Address | Instruction Operands

~ g 00000 LD 00100
) 00001 AND NOT 00101
SRCH 00002 LD 00201
— 00003 AND NOT 00102
) 00004 OR LD —

* 00005 AND 00103
—] 00006 AND 00105
()] 00007 ouT 00201

DEL 00008 | END(001) —
N

4
— Confirm that this is the

* — instruction to be deleted.
N

121

Inputting, Modifying, and Checking the Program Section 4-7

4-7-7 Branching Instruction Lines

00000
Il

When an instruction line branches into two or more lines, it is sometimes neces-
sary to use either interlocks or TR bits to maintain the execution condition that
existed at a branching point. This is because instruction lines are executed
across to a right-hand instruction before returning to the branching point to ex-
ecute instructions on a branch line. If a condition exists on any of the instruction
lines after the branching point, the execution condition could change during this
time making proper execution impossible. The following diagrams illustrate this.
In both diagrams, instruction 1 is executed before returning to the branching
point and moving on to the branch line leading to instruction 2.

Branching
point Address | Instruction Operands
: Instruction 1| 00000 LD 00000
00002 00001 Instruction 1
Il i
Il [iercton] 00002 | AND 00002

Diagram A: Correct Operation

00003 Instruction 2

Branching

00000 point 00001

“ “ :'”S"UCNOH 1| Address | Instruction Operands
00002 00000 LD 00000
]l .
i finercton] 20001 | AND 20001

Diagram B: Incorrect Operation 00002 | Instruction 1
00003 AND 00002

TR Bits

122

00004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branching
point cannot be changed before returning to the branch line (instructions at the
far right do not change the execution condition), then the branch line will be ex-
ecuted correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point and the
last instruction on the top instruction line, the execution condition at the branch-
ing point and the execution condition after completing the top instruction line will
sometimes be different, making it impossible to ensure correct execution of the
branch line.

There are two means of programming branching programs to preserve the ex-
ecution condition. One is to use TR bits; the other, to use interlocks
(IL(002)/1L(003)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tempo-
rarily preserve execution conditions. If a TR bit is placed at a branching point, the
current execution condition will be stored at the designated TR bit. When return-
ing to the branching point, the TR bit restores the execution status that was
saved when the branching point was first reached in program execution.

Inputting, Modifying, and Checking the Program Section 4-7

| 00000 00001

The previous diagram B can be written as shown below to ensure correct execu-
tion. In mnemonic code, the execution condition is stored at the branching point
using the TR bit as the operand of the OUTPUT instruction. This execution con-
dition is then restored after executing the right-hand instruction by using the
same TR bit as the operand of a LOAD instruction

Address | Instruction Operands
: : : Instruction 1| 00000 LD 00000
00002 00001 | OUT TRO
{| : Instruction 2| 00002 | AND 00001
Diagram B: Corrected Using a TR bit ggggi :_n;tructlon ! —
00005 AND 00002
00006 Instruction 2

In terms of actual instructions the above diagram would be as follows: The status
of IR 00000 is loaded (a LOAD instruction) to establish the initial execution con-
dition. This execution condition is then output using an OUTPUT instruction to
TR 0 to store the execution condition at the branching point. The execution con-
dition is then ANDed with the status of IR 00001 and instruction 1 is executed
accordingly. The execution condition that was stored at the branching point is
then re-loaded (a LOAD instruction with TR 0 as the operand), this is ANDed with
the status of IR 00002, and instruction 2 is executed accordingly.

The following example shows an application using two TR bits.

Address | Instruction Operands
00002
i = e o
°E"E°3 oz [00002 | AND 00001
00004 00003 ouT TR 1
: : | instruction 3| 00004 AND . 00002
00005 00005 Instruction 1
¥ finstruction 4| 00006 | LD TR 1
00007 AND 00003
00008 Instruction 2,
00009 LD TRO
00010 AND 00004
00011 Instruction 3
00012 LD TRO
00013 AND NOT 00005
00014 Instruction 4

In this example, TR 0 and TR 1 are used to store the execution conditions at the
branching points. After executing instruction 1, the execution condition stored in
TR 1 is loaded for an AND with the status IR 00003. The execution condition
stored in TR 0 is loaded twice, the first time for an AND with the status of IR
00004 and the second time for an AND with the inverse of the status of IR 00005.

TR bits can be used as many times as required as long as the same TR bit is not
used more than once in the same instruction block. Here, a new instruction block
is begun each time execution returns to the bus bar. If, in a single instruction
block, it is necessary to have more than eight branching points that require the
execution condition be saved, interlocks (which are described next) must be
used.

123

Inputting, Modifying, and Checking the Program Section 4-7

Interlocks

124

Note

When drawing a ladder diagram, be careful not to use TR bits unless necessary.
Often the number of instructions required for a program can be reduced and
ease of understanding a program increased by redrawing a diagram that would
otherwise required TR bits. In both of the following pairs of diagrams, the bottom
versions require fewer instructions and do not require TR bits. In the first exam-
ple, this is achieved by reorganizing the parts of the instruction block: the bottom
one, by separating the second OUTPUT instruction and using another LOAD in-
struction to create the proper execution condition for it.

Although simplifying programs is always a concern, the order of execution of in-
structions is sometimes important. For example, a MOVE instruction may be re-
quired before the execution of a BINARY ADD instruction to place the proper
data in the required operand word. Be sure that you have considered execution
order before reorganizing a program to simplify it.

00000 00001
11 11

Instruction 1

Instruction 2,

I

00000
11 Instruction 2,

00001
11 Instruction 1

Il

00000 00003
I I I I Instruction 1
00001 00002
|1 X
LAl Al
00004
: : : Instruction 2|
00001 00002 00003
: : }r : : Ilnstruction 1|

00000
LAl

00001 00004
I 11 Instruction 2

I

Note TR bits are only used when programming using mnemonic code. They are not

necessary when inputting ladder diagrams directly. The above limitations on the
number of branching points requiring TR bits, and considerations on methods to
reduce the number of programming instructions, still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(002)) and INTERLOCK CLEAR
(ILC(003)) instructions to eliminate the branching point completely while allow-
ing a specific execution condition to control a group of instructions. The INTER-
LOCK and INTERLOCK CLEAR instructions are always used together.

Inputting, Modifying, and Checking the Program

Section 4-7

00000
Il

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the ex-
ecution of all instruction up to the next INTERLOCK CLEAR instruction. If the
execution condition for the INTERLOCK instruction is OFF, all right-hand in-
structions through the next INTERLOCK CLEAR instruction will be executed
with OFF execution conditions to reset the entire section of the ladder diagram.
The effect that this has on particular instructions is described in 5-10 INTER-
LOCK and INTERLOCK CLEAR - IL(002) and ILC(003).

Diagram B can also be corrected with an interlock. Here, the conditions leading
up to the branching point are placed on an instruction line for the INTERLOCK
instruction, all of lines leading from the branching point are written as separate
instruction lines, and another instruction line is added for the INTERLOCK
CLEAR instruction. No conditions are allowed on the instruction line for INTER-
LOCK CLEAR. Note that neither INTERLOCK nor INTERLOCK CLEAR re-
quires an operand.

00001

Al
00002

00000
]l

'| IL(002) I Address | Instruction Operands
00000 LD 00000
Ilnstruction 1 | 00001 IL(002) ===
00002 LD 00001
Wl 00003 Instruction 1
00004 LD 00002
: ILC(003) I 00005 Instruction 2
00006 ILC(003)

If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because IR 00000 is ON, this would produce the
same results as ANDing the status of each of these bits. If IR 00000 is OFF, the
INTERLOCK instruction would produce an OFF execution condition for instruc-
tions 1 and 2 and then execution would continue with the instruction line follow-
ing the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction can
be used within one instruction block; each is effective through the next INTER-
LOCK CLEAR instruction.

00001
]l

00002
|1

00003

00004

]l
L]
00005

Al

]l
L]
00006

@ Address | Instruction Operands
00000 LD 00000
Illnstruction 1 | 00001 ”_(002) .
00002 LD 00001
@ 00003 | Instruction 1
00004 LD 00002
@l 00005 1L(002)
00006 LD 00003
@l 00007 | AND NOT 00004
00008 Instruction 2
=Instruction 4| 00009 LD 00005
00010 Instruction 3
@l 00011 LD : 00006
00012 Instruction 4
00013 ILC(003)

125

Inputting, Modifying, and Checking the Program Section 4-7

4-7-8 Jumps

00000
]l

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for the
first INTERLOCK instruction is OFF), instructions 1 through 4 would be ex-
ecuted with OFF execution conditions and execution would move to the instruc-
tion following the INTERLOCK CLEAR instruction. If IR 00000 is ON, the status
of IR 00001 would be loaded as the execution condition for instruction 1 and then
the status of IR 00002 would be loaded to form the execution condition for the
second INTERLOCK instruction. If IR 00002 is OFF, instructions 2 through 4 will
be executed with OFF execution conditions. If IR 00002 is ON, IR 00003, IR
00005, and IR 00006 will determine the first execution condition in new instruc-
tion lines.

A specific section of a program can be skipped according to a designated execu-
tion condition. Although this is similar to what happens when the execution con-
dition for an INTERLOCK instruction is OFF, with jumps, the operands for all in-
structions maintain status. Jumps can therefore be used to control devices that
require a sustained output, e.g., pneumatics and hydraulics, whereas interlocks
can be used to control devices that do not required a sustained output, e.g., elec-
tronic instruments.

Jumps are created using the JUMP (JMP(004)) and JUMP END (JME(005)) in-
structions. If the execution condition for a JUMP instruction is ON, the program is
executed normally as if the jump did not exist. If the execution condition for the
JUMP instruction is OFF, program execution moves immediately to a JUMP
END instruction without changing the status of anything between the JUMP and
JUMP END instruction.

All JUMP and JUMP END instructions are assigned jump numbers ranging be-
tween 00 and 99. There are two types of jumps. The jump number used deter-
mines the type of jump.

A jump can be defined using jump numbers 01 through 99 only once, i.e., each of
these numbers can be used once in a JUMP instruction and once in a JUMP
END instruction. When a JUMP instruction assigned one of these numbers is
executed, execution moves immediately to the JUMP END instruction that has
the same number as if all of the instruction between them did not exist. Diagram
B from the TR bit and interlock example could be redrawn as shown below using
a jump. Although 01 has been used as the jump number, any number between
01 and 99 could be used as long as it has not already been used in a different part
of the program. JUMP and JUMP END require no other operand and JUMP END
never has conditions on the instruction line leading to it.

Ll
00001

L]
00002

126

Diagram B: Corrected with a Jump

MP(004) 01 Address | Instruction Operands

00000 LD 00000

{'”5”“"“°” ! | 00001 | JMP(004) 01

- 00002 LD 00001
@l 00003 Instruction 1

@l 00004 LD . 00002
00005 Instruction 2

00006 JME(005) 015

This version of diagram B would have a shorter execution time when 00000 was
OFF than any of the other versions.

Controlling Bit Status Section 4-8

The other type of jump is created with a jump number of 00. As many jumps as
desired can be created using jump number 00 and JUMP instructions using 00
can be used consecutively without a JUMP END using 00 between them. It is
even possible for all JUMP 00 instructions to move program execution to the
same JUMP END 00, i.e., only one JUMP END 00 instruction is required for all
JUMP 00 instruction in the program. When 00 is used as the jump number for a
JUMP instruction, program execution moves to the instruction following the next
JUMP END instruction with a jump number of 00. Although, as in all jumps, no
status is changed and no instructions are executed between the JUMP 00 and
JUMP END 00 instructions, the program must search for the next JUMP END 00
instruction, producing a slightly longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one JUMP
END 00 instruction is similar to that of interlocked sections. The following dia-
gram is the same as that used for the interlock example above, except redrawn
with jumps. The execution of this diagram would differ from that of the diagram
described above (e.g., in the previous diagram interlocks would reset certain
parts of the interlocked section, however, jumps do not affect the status of any bit
between the JUMP and JUMP END instructions).

00000
: : MP(004) 00 Address | Instruction Operands
00001 00000 LD 00000
: : =Instruction 1 I 00001 JMP(004) 00
00002 LD 00001
00002 00003 | Instruction 1
1 MP(004) 00
00004 LD 00002
00003 00004 00005 JMP(004) 00
!} y4 Instruction 2
I A : I 00006 LD 00003
00005 00007 AND NOT 00004
11 i
11 @l 00008 Instruction 2
00006
00009 LD 00005
I Instruction 4
1 @l 00010 | Instruction 3
00011 LD 00006
EME(OOS) °°| 00012 | Instruction 4
00013 JME(005) 00

4-8 Controlling Bit Status

There are five instructions that can be used generally to control individual bit sta-
tus. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP,
DIFFERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an op-
erand. Although details are provided in 5-9 Bit Control Instructions, these in-
structions (except for OUTPUT and OUTPUT NOT, which have already been in-
troduced) are described here because of their importance in most programs. Al-
though these instructions are used to turn ON and OFF output bits in the IR area
(i.e., to send or stop output signals to external devices), they are also used to
control the status of other bits in the IR area or in other data areas.

127

Controlling Bit Status

Section 4-8

4-8-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

00000

DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP in-
struction turns ON the operand bit for one cycle after the execution condition for
it goes from OFF to ON; the DIFFERENTIATE DOWN instruction turns ON the
operand bit for one cycle after the execution condition for it goes from ON to OFF.
Both of these instructions require only one line of mnemonic code.

00001

4-8-2 KEEP

Address | Instruction Operands
@l 00000 LD 00000
00001 | DIFU(013) 00200

=D'FD(°14) 00201 I Address | Instruction Operands
00000 | LD 00001
00001 DIFD(014) 00201

Here, IR 00200 will be turned ON for one cycle after IR 00000 goes ON. The next
time DIFU(013) 00200 is executed, IR 00200 will be turned OFF, regardless of
the status of IR 00000. With the DIFFERENTIATE DOWN instruction, IR 00201
will be turned ON for one cycle after IR 00001 goes OFF (IR 00201 will be kept
OFF until then), and will be turned OFF the next time DIFD(014) 00201 is ex-
ecuted.

The KEEP instruction is used to maintain the status of the operand bit based on
two execution conditions. To do this, the KEEP instruction is connected to two
instruction lines. When the execution condition at the end of the first instruction
line is ON, the operand bit of the KEEP instruction is turned ON. When the exe-
cution condition at the end of the second instruction line is ON, the operand bit of
the KEEP instruction is turned OFF. The operand bit for the KEEP instruction will
maintain its ON or OFF status even if it is located in an interlocked section of the
diagram.

In the following example, HR 0000 will be turned ON when IR 00002 is ON and IR
00003 is OFF. HR 0000 will then remain ON until either IR 00004 or IR 00005
turns ON. With KEEP, as with all instructions requiring more than one instruction
line, the instruction lines are coded first before the instruction that they control.

4-8-3 Self-maintaining Bits (Seal)

Although the KEEP instruction can be used to create self-maintaining bits, it is
sometimes necessary to create self-maintaining bits in another way so that they
can be turned OFF when in an interlocked section of a program.

128

o?(l)oz o?(igs Address | Instruction Operands
11 Pl . ;
S: set input KEEP(O11) 00000 | LD 00002
00001 AND NOT 00003
00004 HR 0000 00002 LD 00004
: : R: reset input 00003 OR 00005
00005 ’ P 00004 KEEP(011) HR 0000
1L

Work Bits (Internal Relays) Section 4-9

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that the
operand bit of the OUTPUT instruction will remain ON or OFF until changes oc-
cur in other bits. At least one other condition is used just before the OUTPUT
instruction to function as a reset. Without this reset, there would be no way to
control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown below.
The only difference in these diagrams would be their operation in an interlocked
program section when the execution condition for the INTERLOCK instruction
was ON. Here, just as in the same diagram using the KEEP instruction, two reset
bits are used, i.e., HR 0000 can be turned OFF by turning ON either IR 00004 or

IR 00005.
00002 00003 00004 00005 Q Address | Instruction Operands
_| L LK y4 X HR 0000

! Al Al Al 00000 LD 00002
00001 AND NOT 00003

HR 0000 00002 | OR HR 0000

i} 00003 | AND NOT 00004
00004 AND NOT 00005

00005 ouT HR 0000

4-9 Work Bits (Internal Relays)

In programming, combining conditions to directly produce execution conditions
is often extremely difficult. These difficulties are easily overcome, however, by
using certain bits to trigger other instructions indirectly. Such programming is
achieved by using work bits. Sometimes entire words are required for these pur-
poses. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are not
allocated as I/O bits, and certain unused bits in the AR area, are available for use
as work bits. Be careful to keep an accurate record of how and where you use
work bits. This helps in program planning and writing, and also aids in debugging
operations.

Work Bit Applications Examples given later in this subsection show two of the most common ways to
employ work bits. These should act as a guide to the almost limitless number of
ways in which the work bits can be used. Whenever difficulties arise in program-
ming a control action, consideration should be given to work bits and how they
might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used first
as the operand for one of these instructions so that later it can be used as a con-
dition that will determine how other instructions will be executed. Work bits can
also be used with other instructions, e.g., with the SHIFT REGISTER instruction
(SFT(010)). An example of the use of work words and bits with the SHIFT REG-
ISTER instruction is provided in 5-15-1 SHIFT REGISTER — SFT(010).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Understand-
ing the use of these bits is essential to effective programming.

129

Work Bits (Internal Relays)

Section 4-9

Reducing Complex

Work bits can be used to simplify programming when a certain combination of

Conditions conditions is repeatedly used in combination with other conditions. In the follow-
ing example, IR 00000, IR 00001, IR 00002, and IR 00003 are combined in a
logic block that stores the resulting execution condition as the status of IR
24600. IR 24600 is then combined with various other conditions to determine
output conditions for IR 00100, IR 00101, and IR 00102, i.e., to turn the outputs
allocated to these bits ON or OFF.

00000 00001 Address | Instruction Operands
1 W @ 00000 | LD 00000
00001 | AND NOT 00001
otl)(:oz 00002 OR 00002
11 00003 | ORNOT 00003
00004 | ouT 24600
00003 00005 | LD 24600
4 00006 | AND 00004
00007 | AND NOT 00005
24600 00004 00005 @ 00008 | OUT 00100
I I A 00009 | LD 24600
00010 | ORNOT 00004
24600 00005 Q 00011 | AND 00005
11 11 00101
00012 | OUT 00101
00013 | LD NOT 24600
Ny 00014 | OR 00006
00015 | OR 00007
24600 00016 ouT 00102

Differentiated Conditions

130

00006

00007
Nl

Work bits can also be used if differential treatment is necessary for some, but not
all, of the conditions required for execution of an instruction. In this example, IR
00100 must be left ON continuously as long as IR 00001 is ON and both IR
00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR 00005 is OFF.
It must be turned ON for only one cycle each time IR 00000 turns ON (unless one
of the preceding conditions is keeping it ON continuously).

Programming Precautions Section 4-10

This action is easily programmed by using IR 22500 as a work bit as the operand
of the DIFFERENTIATE UP instruction (DIFU(013)). When IR 00000 turns ON,
IR 22500 will be turned ON for one cycle and then be turned OFF the next cycle
by DIFU(013). Assuming the other conditions controlling IR 00100 are not keep-
ing it ON, the work bit IR 22500 will turn IR 00100 ON for one cycle only.

O??Oo Address | Instruction Operands
00000 LD 00000
22500 00001 DIFU(013) 22500
1} 00100 00002 | LD 22500
00001 00002 00003 00003 | LD 00001
00004 AND NOT 00002
00004 00005 00005 [AND NOT 00003
! Al 00006 OR LD -
00007 | LD 00004
00008 AND NOT 00005
00009 OR LD -
00010 ouT 00100

4-10 Programming Precautions

The number of conditions that can be used in series or parallel is unlimited as
long as the memory capacity of the PC is not exceeded. Therefore, use as many
conditions as required to draw a clear diagram. Although very complicated dia-
grams can be drawn with instruction lines, there must not be any conditions on
lines running vertically between two other instruction lines. Diagram A shown
below, for example, is not possible, and should be drawn as diagram B. Mne-
monic code is provided for diagram B only; coding diagram A would be impossi-

ble.
00000 00002
: : J— : : :Instruction 1|
00004
00001 00003
!l j,r : Instruction 2|
Diagram A
00001 00004 00002 Address | Instruction Operands
| | | [] :
00000 LD 00001
0??00 00001 AND 00004
" 00002 | OR 00000
00000 00004 00003
: : : : }]I/ @l 00003 AND : 00002
00004 Instruction 1
oooot 00005 [LD 00000
I 00006 | AND 00004
Diagram B 00007 | OR 00001
00008 AND NOT 00003
00009 Instruction 2

The number of times any particular bit can be assigned to conditions is not lim-
ited, so use them as many times as required to simplify your program. Often,
complicated programs are the result of attempts to reduce the number of times a
bit is used.

131

Programming Precautions Section 4-10

Except for instructions for which conditions are not allowed (e.g., INTERLOCK
CLEAR and JUMP END, see below), every instruction line must also have at
least one condition on it to determine the execution condition for the instruction
at the right. Again, diagram A , below, must be drawn as diagram B. If an instruc-
tion must be continuously executed (e.g., if an output must always be kept ON
while the program is being executed), the Always ON Flag (SR 25313) in the SR
area can be used.

: Instruction I

Diagram A: Incorrect

25313
Il

i | || Instruction | Address | Instruction Operands
00000 | LD 25313
Diagram B 00001 Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the sec-
ond of a pair of instructions and is controlled by the execution condition of the
first of the pair. Conditions should not be placed on the instruction lines leading to
these instructions. Refer to Section 5 Instruction Set for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines. This
can be avoided by redrawing as shown in diagram B so that no AND LOAD or OR
LOAD instructions are required. Refer to 5-8-2 AND LOAD and OR LOAD for
more details and Section 7 Program Monitoring and Execution for further exam-

ples.
00000 Address | Instruction Operands
I 00207 00000 | LD 00000
00001 00207 00001 LD 00001
| | | 00002 AND 00207
00003 ORLD -
00004 ouT 00207
Diagram A
00001 00207 Address | Instruction Operands
|—|: @ 00000 | LD 00001
00001 AND 00207
0°°|°° 00002 | OR 00000
00003 ouT 00207
Diagram B

132

Special I/0 Unit Interface Programs Section 4-12

4-11 Program Execution

When program execution is started, the CPU Unit cycles the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the proper
order so that, for example, the desired data is moved to a word before that word
is used as the operand for an instruction. Remember that an instruction line is
completed to the terminal instruction at the right before executing an instruction
lines branching from the first instruction line to other terminal instructions at the
right.

Program execution is only one of the tasks carried out by the CPU Unit as part of
the cycle time. Refer to Section 6 Program Execution Timing for details.

4-12 Special I/0 Unit Interface Programs

This section provides programming methods and precautions for Special 1/0
Unit operation.

4-12-1 Restarting Special I/O Units

When a Special I/0 Unit is restarted, execution of IORF(097) is disabled until
Special I/0O Unit initialization is completed.

ON
SR 28100
(Unit #0 Restart Bit) OFF

ON <— Special I/0 Unit —

SR 27400 Initialization
(Unit #0 Restart Flag) OFF

Execution of IORF(097)
for Unit #0 Enabled —=— Disabled —<— Enabled

While the Restart Flag (SR 27400) is ON, normal END refreshing is performed
and the Special I/0 Unit is initialized. This processing occurs regardless of the
settings in DM 6620, DM 6621, and DM 6623 which relate to Special 1/0 Unit
refreshing. IORF(097) instructions in the program won’t be executed for the ini-
tializing Unit until initialization is completed.

Special /0 Unit data that was to be refreshed might be lost during initialization.
When writing a program to restart Special I/O Units, disable programming that
depends on data from the initializing Special I/O Unit, such as data used in cal-
culations, while its Restart Flag (SR 27400 to SR 27415) is ON. Normal program
operations can continue for Units that aren’t initializing.

The Restart Flag won’t turn ON for Special I/0O Units mounted on Slave Racks.

The standard Special I/O Unit restart time is (20 x the cycle time).

133

Special I/0 Unit Interface Programs Section 4-12

4-12-2 Special I/0 Unit Error Processing Program

Use a program like the one shown below to restart a Special I/0 Unit in which an
error has occurred. This example program restarts Unit 1.

AR 0001
(Unit #0 Error Flag)

AR0001
X
Al

DIFU(013) AR0101 Restart

SR 27401
(Unit #1 Restart Flag)

27401 Disables
X{' : JMP(004) 00 I calculations
during Init-

Calculations using data from Special I/O Unit 1 ‘ ialization.

—| : JME(005) 00

4-12-3 Changing the Special I/O Unit Settings

Programming Console

Operations

134

1,2, 3.

In the C200HX/HG/HE, ladder instructions can be used to write data into the
Special I/0 Unit Areas (DM 1000 to DM 2599) and change the Special I/0 Unit
settings. Changing the settings is useful when different settings are required for
different production processes.

In this example there are two production processes that require different Special
I/0 Unit settings. The settings for the first process are stored in DM 7000 through
DM 7999 and the settings for the second process are stored in DM 8000 through
DM 8999.

Steps 1 through 5 in the following procedure aren’t necessary when XFER(070)
is used to overwrite DM 1000 through DM 1999 directly from the program with
the contents of fixed DM (DM 6144 through DM 6599). In this case, just restart
the Unit from the program after overwriting DM 1000 through DM 1999.

1. Clear the memory (all clear).

[CLR PLAY HNOT]_.[R;CH EXT]—.EIIONTR]

SET RESET
The UM Area Allocation operation can’t be performed unless the memory
has been cleared.

2. Perform the UM Area Allocation operation to allocate 2K words to the ex-
pansion DM area (DM 7000 through DM 8999).

oot
3y, 60 63 ER), E5

3. Perform the Hexadecimal/BCD Data Modification operation to set the Spe-
cial I/O Unit mode to “C200H-compatible ROM mode 1” by setting DM 6602
to #0100. This mode transfers the contents of DM 7000 through DM 7999 to
DM 1000 through DM 1999 at PC startup. This new PC Setup setting won't
be effective until the PC is restarted by turning it OFF and then ON again.

4. Set pin 4 of the CPU Unit's DIP switch to ON. This setting enables the user to
assign expansion instruction function codes.

Special 1/0 Unit Interface Programs

Section 4-12

5. XDMR(—) has a default function code of 280. If function code 280 has been
assigned to another instruction, perform the Expansion Instruction Function
Code Assignment operation to assign a function code to XDMR(—).

— — (~ r
CLR EXT > * »| cHG > * > wnms]—-[CLR]
s _) {

4= M-

6. Input the program.

Example Program
(Special I/0 Unit 2)
initializing.

End of process 1.
40000

|

@XDMR(280)

#0100

#8200

DM1200

DIFU(013) AR0102

The following program changes the Special I/O Unit Area settings for Unit 2, re-
starts the Unit, and disables calculations using data from Unit 2 while the Unit is

Transfers
the contents
of DM 8200
through

DM 8299 to
DM 1200
through

DM 1299.

Restarts

Unit 2.

Unit #2 Restart Flag
27402

y4
Al

Disables
calculations
during Init-
ialization.

: JMP(004) 00 I

Calculations using data from Special I/0 Unit 2 ‘

JME(005) 00

4-12-4 Special I/0 Unit I/O Refreshing Interval

When the interval between I/O refreshes is too short, the processing in the Spe-
cial I/O Unit can be delayed causing Special I/O Unit errors or otherwise interfer-
ing with proper Unit operation. In this case, use the following methods to restore
normal operation.

Short Interval between
END Refreshes

There are two ways to extend the interval between 1/O refreshes. Either of these
methods can be used.

1,2, 3... 1. Disable cyclic Special I/O Unit refreshing in the PC Setup (DM 6621) and

use IORF(097) to refresh the Special I/O Unit’s I1/0 only when necessary.

To disable cyclic refreshing for all Special /0O Units mounted to the CPU
Rack or Expansion 1/0O Racks, set DM 6621 to #0100.

2. Increase the PC’s cycle time by setting a minimum cycle time in the PC Set-
up (DM 6619) or executing SCAN(018) in the program.

Short Interval between
IORF(097) and END Refresh

Change the program to use either IORF(097) refreshing or END refreshing. It is
also possible to increase the PC’s cycle time by setting a minimum cycle time in
the PC Setup (DM 6619) or executing SCAN(018) in the program.

Short Interval between

Change the program to increase the spacing between IORF(097) instructions or
IORF(097) Instructions

use just one IORF(097) instruction.

135

Special I/0 Unit Interface Programs Section 4-12

4-12-5 Reducing the Cycle Time

136

When a Special I/O Unit is mounted in a C200HX/HG/HE PC, END refreshing is
performed automatically each cycle without making any special settings. When
several Special I/0 Units are being used, the cycle time might become too long
because of the time required for this automatic I/O refreshing.

To reduce the time devoted to /O refreshing, disable cyclic Special I/O Unit re-
freshing in the PC Setup (DM 6621) and use IORF(097) to refresh the Special
I/O Units instead. I/O refreshing for all Special /0 Units mounted to the CPU
Rack or Expansion I/O Racks can be disabled in the PC Setup by setting DM
6621 to #0100.

The following example program reduces the Special I/O Unit refreshing time for
a PC with four Special I/0 Units by refreshing just one Unit each cycle. The Units
are refreshed in order: Unit 0, Unit 1, Unit 2, Unit 3, Unit 0, and so on.

C200HX/HG/HE

Unit 0
Unit 1
Unit 2
Unit 3

The following program example is relevant for Special /0O Units mounted to the
CPU Rack or Expansion 1/0 Racks only, because END refreshing is always

Analog Timer Unit Programming Section 4-13

performed on Special I/0 Units mounted to Slave Racks regardless of the PC
Setup settings.

30000 30001 30002 30003
)4 ()4 (P4 ()4
4 4 4 4 80000

30000 30001 30002 30003

¥)4 Y4 K
30000 ﬂ | l r4 P4 1 .4 @
(I o
o o
. o 30000 30001 30002 30003
o P ¥ Y%)4 [y4
30000 | o J_| 1 _| 4 71 A1 v 4 30002
I |
o ' |
|' (1 : | 30000 30001 30002 30003
y%)4)4 K
e | bt i ! 4 A g g 30003
U |
SRLE
Lo o 30001 30002 30003
S B i
K11 I R T oy b
[B [T
| [I l oo l l
| — —t+— 30000
TR T TR T EE R TR N B : IORF(097)
T T T A KT SN B B .
R R S S SN T S 100 | Refreshes Unit 0.
100
30001
1 cycle : IORF(097)
110] Refreshes Unit 1.
110
30002
} IORF(097) _
20 Refreshes Unit 2.
120
30003
: IORF(097)
130| Refreshes Unit 3.
130

Note IR 30000 is used in an OUT instruction twice in this program. Although accept-
able in the above example, this type of duplication is not usually allowed unless
there is a specific reason and then only when proper operation can be ensured.

4-13 Analog Timer Unit Programming

4-13-1 Operation

An Analog Timer Unit’s timer SV can be changed easily without a Programming
Console. The Unit is equipped with an external variable resistor connector, so a
variable resistor can be installed in the control panel and connected to the Ana-
log Timer Unit to set or adjust the timer SV manually.

When the Timer Start Input is turned ON, the Timer Set Bits allocated to the Ana-
log Timer Unit (bits 00 to 03 of n) are turned ON, the analog timer begins to oper-
ate, and the timer set indicator (SET) on the Unit will light.

When the Unit's timer SV (set internally or externally) elapses, the Unit's
Completion Flags (bits 08 to 11 of n) and the Time-up Output will be turned ON.
Also, the time-up indicator on the Unit (TIME UP) will light.

137

Analog Timer Unit Programming Section 4-13

Refer to the Analog Timer Unit's Operation Manual for details on switching be-
tween internal and external timer SV settings, connecting a variable resistor, and
switch settings.

Timer Start Input Timer Set
_l : Bits
(Bits 00 to

** ,,,,,,,,,,,,,,,,,,,,,,, . 03 of n)
Bits 08 to 11 of n X

\ Time-up
_|| Output
Completion Flags

Timer Start Input

Time-up Output

Timer interval

4-13-2 Bit Allocation and DIP Switch Settings

The following table shows the use of the word (n) allocated to the Analog Timer
Unit. This word address depends upon the slot in which the Unit is mounted.

Bit I/O class Function Comments
00 Output Timer 0 Set Bit ON when timer is set.
01 Timer 1 Set Bit
02 Timer 2 Set Bit
03 Timer 3 Set Bit
04 Timer O Stop Bit OFF: Enable timer operation
05 Timer 1 Stop Bit ON: Stop timer operation
06 Timer 2 Stop Bit
07 Timer 3 Stop Bit
08 Input Timer 0 Completion Flag | ON when timer has timed out.
09 Timer 1 Completion Flag
10 Timer 2 Completion Flag
11 Timer 3 Completion Flag
12t0 15 | --- Not used.
Timer Range Setting Set the timer range with the upper DIP switch on the front of the Unit. Each tim-
er’s range can be set independently.
Range Timer O Timer 1 Timer 2 Timer 3
Pin8 | Pin7 | Pin6 | Pin5 | Pin4 | Pin3 | Pin2 | Pin1
0.1to1s OFF |OFF |OFF |OFF |OFF |OFF |OFF |OFF
1t010s ON OFF |ON OFF |ON OFF |ON OFF
10to 60 s OFF |ON OFF |ON OFF |ON OFF |ON
1 to 10 minutes ON ON ON ON ON ON ON ON

Selecting Internal/External Select internal or external setting with the lower DIP switch on the front of the
Timer SV Setting Unit.

Setting Timer 0 (pin 4) | Timer 1 (pin 3) | Timer 2 (pin 2) | Timer 3 (pin 1)
Internal ON ON ON ON
External OFF OFF OFF OFF

138

Analog Timer Unit Programming Section 4-13

4-13-3 Example Program

Unit Configuration The following table shows the word allocations for the Units in this example.
Item Word
IR word allocated to the Analog Timer Unit IR 002
IR word allocated to the Input Unit IR 000
IR word allocated to the Output Unit IR 005

The Analog Timer Unit's SV settings and external variable resistor control con-
nections are shown below.

Timer Set value Range Variable Variable resistor
resistor control
setting

0 0.6s 0.1to1s 60% clockwise | Internal
1 3s 1t010s 30% clockwise | Internal
2 20s 10to 60 s 20% clockwise | External
3 8 minutes 1 to 10 minutes | 80% clockwise | External

139

Analog Timer Unit Programming Section 4-13

Unit Settings and Wiring The following diagram shows the switch settings and wiring connections re-
quired to achieve the Unit configuration shown above.

——— P The settings on these two variable resistor controls are valid

because timers 0 and 1 are set for internal SV settings.
Use the screwdriver included with the Unit to set the variable
resistor.

The settings on these two variable resistor controls are not
valid because timers 2 and 3 are set for external SV settings.

The timer range settings are as follows:

Timer O: Timer 1: Timer 2: Timer 3:

AL
o B &

- ~ 0.1to 1 second | 1to 10 seconds | 10 to 60 seconds| 1 to 10 minutes
2N

"[/ ‘]y Pin 8 Pin7 Pin 6 Pin5 Pin 4 Pin 3 Pin 2 Pin 1

OFF OFF ON OFF OFF ON ON ON

i o867 8

’———} The internal/external SV settings are as follows:

Timer 0 Timer 1 Timer 2 Timer 3
Pin 4 Pin 3 Pin 2 Pin 1
Internal Internal External External
o ON ON OFF OFF
0 il
i}
1)
2 @
o—1
3 i}
\ ,
—> Do not connect anything to these connectors. Timers 0 and 1

are set for internal SV settings, so the variable resistor con-
trols at the top of the Unit are used to set their SVs.

x XY b 4.4 External SV Settings (0 to 20 KQ)

Connect variable resistor for timers 2 and 3 to these connec-
tors. Refer to the Analog Timer Unit's Operation Manual for
details on these settings.

140

Analog Timer Unit Programming Section 4-13

Ladder Program The following diagram shows the example ladder program.

1,2, 3.

00005 Timer 0 Completion Flag

1. Output IR 00500 will go ON about 0.6 s (T0) after input IR 00002 goes ON.
2. Output IR 00501 will go ON about 3 s (T1) after input IR 00003 goes ON.

3. Output IR 00502 will go ON about 20 s (T2) after input IR 00004 goes ON
and IR 00503 will go ON about 8 minutes (T3) after input IR 00004 goes ON.

4. Timers 2 and 3 are stopped by input IR 00005.

Timer Stop Bit

sl

00002

00206) T2

Timers 2 and 3 stop operating when the
emergency stop input goes ON.

To Timer 0 (00200) starts operating and the

ml

Y
00208
|

Unit's SET indicator lights when IR 00002
goes ON.

When the time set on the internal volume
control elapses, the Completion Flag (00208)

Tim!er 0 Completion Flag

00003

00500 goes ON and the Unit's TIME UP indicator
lights. Output IR 00500 goes ON at the same

Timer 1 SetBit fime-

v
Q\®
N
o
o

|

v
00209
L

oo201 YT1 Timer 1 (00201) starts operating and the
Unit's SET indicator lights when IR 00003
goes ON.

When the time set on the internal variable
00501 resistor control elapses, the Completion Flag

|
Timer 1 Completion Flag

00004

|

(00209) goes ON and the Unit's TIME UP
Timer 2 Set Bit indicator lights. Output IR 00501 goes ON at
the same time.

OO

Timer 2 (00202) and timer 3 (00203) start
operating and the Unit’s SET indicator lights
when IR 00004 goes ON.

When the time set on the external variable
resistor control elapses, the Completion Flag
(00210) goes ON and the Unit’'s TIME UP in-
dicator lights. Output IR 00502 goes ON at

\
00211
|

00502 the same time.

\
'
\
\
'
I
\
\
'
'
\ a
O\ \O
w

When the time set on the external variable
resistor control elapses, the Completion Flag

|
Timer 3 Completion Flag

00503 (00211) goes ON and the Unit's TIME UP in-
dicator lights. Output IR 00503 goes ON at
the same time.

141

SECTION 5
Instruction Set

The C200HX/HG/HE PCs have large programming instruction sets that allow for easy programming of complicated control
processes. This section explains instructions individually and provides the ladder diagram symbol, data areas, and flags used
with each.

The many instructions provided by the C200HX/HG/HE PCs are organized in the following subsections by instruction group.
These groups include Ladder Diagram Instructions, Bit Control Instructions, Timer and Counter Instructions, Data Shifting
Instructions, Data Movement Instructions, Data Comparison Instructions, Data Conversion Instructions, BCD Calculation
Instructions, Binary Calculation Instructions, Symbol Math Instructions, Logic Instructions, Subroutines, Special Instruc-
tions, Network Instructions, Serial Communications Instructions, Advanced I/O Instructions, and Special I/O Unit Instruc-
tions.

Some instructions, such as Timer and Counter instructions, are used to control execution of other instructions, e.g., a TIM
Completion Flag might be used to turn ON a bit when the time period set for the timer has expired. Although these other
instructions are often used to control output bits through the Output instruction, they can be used to control execution of other
instructions as well. The Output instructions used in examples in this manual can therefore generally be replaced by other
instructions to modify the program for specific applications other than controlling output bits directly.

5-1 NOTAtION . .ttt e e e 147
5-2 Instruction Format 147
5-3 Data Areas, Definer Values, and Flags i, 147
5-4 Differentiated INStruCtionsttt e e 149
5-5 Expansion InStructionsot e 150
5-6 Coding Right-hand InStructionsu .ttt 151
5-7 Instruction Set ListSo e 154
5-7-1 Function Codesuiirii it e e 154
5-7-2 Alphabetic List by MNemonicc.oiuininininntenenen. 156
5-8 Ladder Diagram INStructionsttt 160
5-8-1 LOAD, LOAD NOT, AND, AND NOT,OR,and ORNOT 160
5-8-2 ANDLOADand ORLOAD i 161
5-9 Bit Control INStruCtionsttt e e e 161
5-9-1 OUTPUT and OUTPUT NOT -OUTand OUTNOT 161
5-9-2 DIFFERENTIATE UP and DOWN - DIFU(013) and DIFD(014) 162
5-9-3 SETand RESET-SETandRSET 164
5-9-4 KEEP—KEEP(OLL)o e e e e e 165
5-9-5 BIT TEST: TST(350) and TSTN(351) 166
5-10 INTERLOCK and INTERLOCK CLEAR —IL(002) and ILC(003) 167
5-11 JUMP and JUMP END - JMP(004) and JIME(005) 169
5-12 END —END(OOL) . ..o e 170
5-13 NO OPERATION — NOP(000) e e e e e 170
5-14 Timer and Counter INStruCtionSttt e e e 171
5-14-1 TIMER —TIM e e e e 171
5-14-2 HIGH-SPEED TIMER — TIMH(O015) 176
5-14-3 TOTALIZING TIMER — TTIM(087) e 177
5-14-4 COUNTER — CNT e 178
5-14-5 REVERSIBLE COUNTER —CNTR(012) 181
5-15 Data Shifting 183
5-15-1 SHIFT REGISTER — SFT(010)o e 183
5-15-2 REVERSIBLE SHIFT REGISTER —SFTR(084) 185
5-15-3 ARITHMETIC SHIFT LEFT — ASL(025) 187
5-15-4 ARITHMETIC SHIFT RIGHT — ASR(026) 187
5-15-5 ROTATE LEFT —ROL(027) . ..ot e e e e 188
5-15-6 ROTATE RIGHT —ROR(028) e 188
5-15-7 ONE DIGIT SHIFT LEFT — SLD(074) 189
5-15-8 ONE DIGIT SHIFT RIGHT —SRD(075) 189

143

144

5-16

5-17

5-18

5-19

5-15-9

WORD SHIFT - WSFT(016) ...

5-15-10 ASYNCHRONOUS SHIFT REGISTER - ASFT(017)
DataMovement

5-16-1
5-16-2
5-16-3
5-16-4
5-16-5
5-16-6
5-16-7
5-16-8
5-16-9

MOVE - MOV(021)
MOVE NOT - MVN(022)
BLOCK SET — BSET(071)

BLOCK TRANSFER — XFER(070)ot

DATA EXCHANGE - XCHG(073

) R

SINGLE WORD DISTRIBUTE —DIST(080)

DATA COLLECT - COLL(081) .
MOVE BIT - MOVB(082)
MOVE DIGIT - MOVD(083) . ..

5-16-10 TRANSFER BITS - XFRB(062)
5-16-11 EM BLOCK TRANSFER = XFR2(—) i i i
5-16-12 BLOCK TRANSFER TO OTHER EM BANK -BXF2(—)
5-16-13 EM BANK TRANSFER — BXFR(125),
Data Comparison

5-17-1
5-17-2
5-17-3
5-17-4
5-17-5
5-17-6
5-17-7
5-17-8
5-17-9

5-18-1
5-18-2
5-18-3
5-18-4
5-18-5
5-18-6
5-18-7
5-18-8
5-18-9

5-19-1
5-19-2
5-19-3
5-19-4
5-19-5
5-19-6
5-19-7
5-19-8

MULTI-WORD COMPARE — MC
COMPARE - CMP(020)

MPOI9) .o

DOUBLE COMPARE —CMPL(060)t

BLOCK COMPARE - BCMP(068
TABLE COMPARE — TCMP(085)

) N

AREA RANGE COMPARE —ZCP(088)ovtiiiiiiiiiin i
DOUBLE AREA RANGE COMPARE — ZCPL(116)
SIGNED BINARY COMPARE —CPS(114)
DOUBLE SIGNED BINARY COMPARE —CPSL(115)
5-17-10 Input Comparison Instructions (300t0328),
Data Conversion

BCD-TO-BINARY - BIN(023) ..

DOUBLE BCD-TO-DOUBLE BINARY —BINL(058)

BINARY-TO-BCD - BCD(024) .
DOUBLE BINARY-TO-DOUBLE

BCD —BCDL(059) . .+ v e veeeeen

HOURS-TO-SECONDS — SEC(065) oottt
SECONDS-TO-HOURS —HMS(066)c.oiiniiiiiiinnn..
4-TO-16/8-TO-256 DECODER —MLPX(076)oiviii i,
16-TO-4/256-TO-8 ENCODER — DMPX(077)c.oviiiinii...
7-SEGMENT DECODER — SDEC(078)ot
5-18-10 ASCII CONVERT - ASC(086) . .
5-18-11 ASCII-TO-HEXADECIMAL —HEX(162),
5-18-12 SCALING - SCL(194)
5-18-13 COLUMN TO LINE — LINE(063)
5-18-14 LINE TO COLUMN — COLM(064)ttt
5-18-15 2’S COMPLEMENT - NEG(160)
5-18-16 DOUBLE 2’S COMPLEMENT —NEGL(161)cooiiiiin ...
Symbol Math Instructions
Binary Addition: +(400)/+L(401)/+C(402)/+CL(403)c..oveui...

BCD Addition: +B(404)/ +BL(405

Y+BC@06)/+BCLMA0T) . ..o\

Binary Subtraction: <(410)/ -L(411)/-C(412)/-CL(413)

BCD Subtraction: —B(414)/ -BL(4

15)/~BC(416)/~BCL(417)vvve ...

Binary Multiplication: *(420)/ *L(421)/*U(422)/*UL(423) en...
BCD Multiplication: *B(424)/ *BL(425) i
Binary Division: /(430)/ /L(431)//U432)//UL(433)

BCD Division: /B(434)/ /BL(435)

190
191
192
192
193
193
195
195
196
197
200
200
201
202
203
204
205
205
206
209
210
212
213
214
215
216
217
220
220
221
221
222
223
224
225
228
231
234
235
238
240
241
242
243
244
244
246
248
253
257
259
261
263

5-20 BCD Calculationscoo.....

5-21

5-22

5-23

5-24

5-25

5-26

5-20-1
5-20-2
5-20-3
5-20-4
5-20-5
5-20-6
5-20-7
5-20-8
5-20-9

INCREMENT — INC(038)
DECREMENT — DEC(039)
SET CARRY — STC(040)
CLEAR CARRY - CLC(041)
BCD ADD - ADD(030)
DOUBLE BCD ADD — ADDL(054)
BCD SUBTRACT — SUB(031)

DOUBLE BCD SUBTRACT —SUBL(055)coiiiiii it

BCD MULTIPLY - MUL(032)

5-20-10 DOUBLE BCD MULTIPLY — MULL(056)cvuuiiiiiinneen...
5-20-11 BCD DIVIDE - DIV(033)
5-20-12 DOUBLE BCD DIVIDE —DIVL(057) . .. oottt e
5-20-13 FLOATING POINT DIVIDE —FDIV(079)ooiii i
5-20-14 SQUARE ROOT - ROOT(072) ...
Binary Calculations

5-21-1
5-21-2
5-21-3
5-21-4
5-21-5
5-21-6
5-21-7
5-21-8
5-21-9

5-22-1
5-22-2
5-22-3
5-22-4
5-22-5
5-22-6

BINARY ADD - ADB(050)
BINARY SUBTRACT - SBB(051)
BINARY MULTIPLY - MLB(052)
BINARY DIVIDE - DVB(053) ...

DOUBLE BINARY ADD — ADBL(480)ottt
DOUBLE BINARY SUBTRACT —SBBL(481)ccoiiiiiiin.
SIGNED BINARY MULTIPLY —MBS(484)
DOUBLE SIGNED BINARY MULTIPLY - MBSL(482)
SIGNED BINARY DIVIDE —DBS(485)ottt
5-21-10 DOUBLE SIGNED BINARY DIVIDE -DBSL(483)c.cooou....
Special Math Instructions

FIND MAXIMUM — MAX(182) ..
FIND MINIMUM - MIN(183)
AVERAGE VALUE - AVG(195) ..
SUM — SUM(184) ..ovvvo .

ARITHMETIC PROCESS — APR(069) it

PID CONTROL - PID(190)

Logic Instructions

5-23-1
5-23-2
5-23-3
5-23-4
5-23-5

COMPLEMENT - COM(029)
LOGICAL AND — ANDW(034) ...
LOGICAL OR — ORW(035)
EXCLUSIVE OR - XORW(036) ..
EXCLUSIVE NOR - XNRW(037) .

Subroutines and Interrupt Control

5-24-1
5-24-2
5-24-3
5-24-4
5-24-5
5-24-6

5-26-1

5-26-2
5-26-3
5-26-4

Subroutines
Interrupts
SUBROUTINE ENTER - SBS(091)

SUBROUTINE DEFINE and RETURN — SBN(092)/RET(093)

MACRO -MCRO(099)

INTERRUPT CONTROL — INT(089)c.iiii i
Step Instructions
5-25-1 STEP DEFINE and STEP START-STEP(008)/SNXT(009)
Special Instructions

FAILURE ALARM - FAL(006) and

SEVERE FAILURE ALARM —-FALS(007)o it

CYCLE TIME - SCAN(018)

TRACE MEMORY SAMPLING - TRSM(045)ot

MESSAGE DISPLAY — MSG(046)

264
265
265
265
265
266
267
268
270
271
272
273
274
275
278
280
280
282
285
285
286
288
290
291
292
293
294
294
295
297
299
300
303
313
313
314
315
316
317
317
317
318
321
322
323
325
329
329
338

338
339
340
341

145

146

5-27

5-28

5-29

5-30

5-26-5 LONG MESSAGE - LMSG(047)
5-26-6 TERMINAL MODE — TERM(048)

5-26-7 WATCHDOG TIMER REFRESH-WDT(@094)

5-26-8 I/O REFRESH —IORF(097)

5-26-9 GROUP-2 HIGH-DENSITY I/O REFRESH — MPRF(061)

5-26-10 BIT COUNTER - BCNT(067)
5-26-11 FRAME CHECKSUM -FCS(180)

5-26-12 FAILURE POINT DETECTION —FPD(269) ooiio....

5-26-13 DATA SEARCH - SRCH(181)
5-26-14 EXPANSION DM READ — XDMR(280) .

5-26-15 INDIRECT EM ADDRESSING —IEMS(—)coiiiiiiii i

5-26-16 SELECT EM BANK - EMBC(281)

Network INStruCtionsttt e e e e

5-27-1 NETWORK SEND - SEND(090)
5-27-2 NETWORK RECEIVE - RECV(098) ...
5-27-3 About Network Communications
Serial Communications Instructions
5-28-1 RECEIVE-RXD(35)
5-28-2 TRANSMIT - TXD(236)
5-28-3 CHANGE RS-232C SETUP - STUP(237)
5-28-4 PROTOCOL MACRO - PMCR(260)
Advanced I/O Instructions
5-29-1 DIGITAL SWITCH INPUT - DSW(210) .
5-29-2 TEN KEY INPUT - TKY(Q211)

5-29-3 HEXADECIMAL KEY INPUT -HKY(212)

5-29-4 MATRIX INPUT - MTR(213)
5-29-5 7-SEGMENT DISPLAY OUTPUT - 7SEG
Special I/O Unit Instructions
5-30-1 SPECIAL I/O UNIT READ - IORD(222)
5-30-2 SPECIAL I/O UNIT WRITE - IOWR(223)
5-30-3 PCMCIA CARD MACRO - CMCR(261)

QU)o

342
343
344
344
345
346
346
348
352
353
354
355
356
356
362
366
368
368
370
373
374
375
376
380
382
385
387
390
391
392
393

Data Areas, Definer Values, and Flags Section 5-3

5-1

5-2

Notation

In the remainder of this manual, all instructions will be referred to by their mne-
monics. For example, the Output instruction will be called OUT; the AND Load
instruction, AND LD. If you’re not sure of the instruction a mnemonic is used for,
refer to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses after
the mnemonic. These function codes, which are 3-digit decimal numbers, are
used to input most instructions into the CPU Unit and are described briefly below
and in more detail in 4-7 Inputting, Modifying, and Checking the Program. A table
of instructions listed in order of function codes, is also provided in Appendix B.

An @ before a mnemonic indicates the differentiated version of that instruction.
Differentiated instructions are explained in Section 5-4.

Instruction Format

Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values (i.e., as constants), but
are usually the addresses of data area words or bits that contain the data to be
used. A bit whose address is designated as an operand is called an operand bit;
a word whose address is designated as an operand is called an operand word. In
some instructions, the word address designated in an instruction indicates the
first of multiple words containing the desired data.

Each instruction requires one or more words in Program Memory. The first word
is the instruction word, which specifies the instruction and contains any definers
(described below) or operand bits required by the instruction. Other operands
required by the instruction are contained in following words, one operand per
word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the same
word as the instruction itself. These operands define the instruction rather than
telling what data it is to use. Examples of definers are TC numbers, which are
used in timer and counter instructions to create timers and counters, as well as
jump numbers (which define which Jump instruction is paired with which Jump
End instruction). Bit operands are also contained in the same word as the in-
struction itself, although these are not considered definers.

5-3 Data Areas, Definer Values, and Flags

In this section, each instruction description includes its ladder diagram symbol,
the data areas that can be used by its operands, and the values that can be used
as definers. Detalils for the data areas are also specified by the operand names
and the type of data required for each operand (i.e., word or bit and, for words,
hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an oper-
and, e.g., if an operand requires two words, the last word in a data area cannot
be designated as the first word of the operand because all words for a single op-
erand must be within the same data area. Also, not all words in the SR and DM
areas are writeable as operands (see Section 3 Memory Areas for details.) Oth-
er specific limitations are given in a Limitations subsection. Refer to Section 3
Memory Areas for addressing conventions and the addresses of flags and con-
trol bits.

147

Data Areas, Definer Values, and Flags Section 5-3

&Caution

Indirect Addressing

Designating Constants

148

The IR and SR areas are considered as separate data areas. If an operand has
access to one area, it doesn’t necessarily mean that the same operand will have
access to the other area. The border between the IR and SR areas can, howev-
er, be crossed for a single operand, i.e., the last bit in the IR area may be speci-
fied for an operand that requires more than one word as long as the SR area is
also allowed for that operand.

The Flags subsection lists flags that are affected by execution of an instruction.
These flags include the following SR area flags.

Abbreviation Name Bit
ER Instruction Execution Error Flag 25503
CY Carry Flag 25504
GR Greater Than Flag 25505
EQ Equals Flag 25506
LE Less Than Flag 25507
N Negative Flag 25402
OF Overflow Flag 25404
UF Underflow Flag 25405

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to exe-
cute the current instruction. The Flags subsection of each instruction lists possi-
ble reasons for ER being ON. ER will turn ON if operands are not entered cor-
rectly. Instructions are not executed when ER is ON. A table of instructions and
the flags they affect is provided in Appendix C Error and Arithmetic Flag Opera-
tion.

When the DM area is specified for an operand, an indirect address can be used.
Indirect DM addressing is specified by placing an asterisk before the DM: *DM.
When an indirect DM address is specified, the designated DM word will contain
the address of the DM word that contains the data that will be used as the operand
of the instruction. If, for example, *DM 0001 was designated as the first operand
and LR 00 as the second operand of MOV(021), the contents of DM 0001 was
1111, and DM 1111 contained 5555, the value 5555 would be moved to LR 00.

Word Content
DM 0000 4C59

----—— mMov(e21)

+DM 0001 T’DM 0001 | 1111 indicat
LR 00 nairec naicates
address ~ DM0002 | F35A DM 1111,

|
DM 1111 5555

DM 1113 | 2506 | ™\ 5555 moved
DM 1114 | D541 to LR 00.

When using indirect addressing, the address of the desired word must be in BCD
and it must specify a word within the DM area. In the above example, the content
of *DM 0000 would have to be in BCD between 0000 and 6655.

The IEMS(—) instruction can be used to change the destination of DM from the
DM area to one of the banks in the EM area. Refer to 5-26-15 INDIRECT EM
ADDRESSING — IEMS(—) for details.

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The available value range for a
given definer or operand depends on the particular instruction that uses it. Con-
stants must also be entered in the form required by the instruction, i.e., in BCD or
in hexadecimal.

Differentiated Instructions

Section 5-4

5-4 Differentiated Instructions

Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the in-
struction mnemonic.

A non-differentiated instruction is executed each time it is cycled as long as its
execution condition is ON. A differentiated instruction is executed only once af-
ter its execution condition goes from OFF to ON. If the execution condition has
not changed or has changed from ON to OFF since the last time the instruction
was cycled, the instruction will not be executed. The following two examples
show how this works with MOV(021) and @ MOV(021), which are used to move
the data in the address designated by the first operand to the address desig-
nated by the second operand.

O??OO MoV(021) Address | Instruction Operands
o 00000 | LD 00000
Diagram A DM 0000 00001_| MOV(021)
HR 10
DM 0000
00000
i | @Mov(021) Address | Instruction Operands
HR 10 00000 | LD 00000
Diagram B DM 0000 00001 | @MOV(021)
HR 10
DM 0000

Note

In diagram A, the non-differentiated MOV(021) will move the content of HR 10 to
DM 0000 whenever it is cycled with 00000. If the cycle time is 80 ms and 00000
remains ON for 2.0 seconds, this move operation will be performed 25 times and
only the last value moved to DM 0000 will be preserved there.

In diagram B, the differentiated @ MOV(021) will move the content of HR 10 to
DM 0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0 sec-
onds with the same 80 ms cycle time, the move operation will be executed only
once during the first cycle in which 00000 has changed from OFF to ON. Be-
cause the content of HR 10 could very well change during the 2 seconds while
00000 is ON, the final content of DM 0000 after the 2 seconds could be different
depending on whether MOV(021) or @ MOV(021) was used.

All operands, ladder diagram symbols, and other specifications for instructions
are the same regardless of whether the differentiated or non-differentiated form
of an instruction is used. When inputting, the same function codes are also used,
but NOT is input after the function code to designate the differentiated form of an
instruction. Most, but not all, instructions have differentiated forms.

Refer to 5-10 INTERLOCK and INTERLOCK CLEAR — IL(002) and IL(003) for
the effects of interlocks on differentiated instructions.

The C200HX/HG/HE PCs also provide differentiation instructions: DIFU(013)
and DIFD(014). DIFU(013) operates the same as a differentiated instruction, but
is used to turn ON a bit for one cycle. DIFD(014) also turns ON a bit for one cycle,

but does it when the execution condition has changed from ON to OFF. Refer to
5-9-2 DIFFERENTIATE UP and DOWN - DIFU(013) and DIFD(014) for details.

Do not use SR 25313 and SR 25315 for differentiated instructions. These bits
never change status and will not trigger differentiated instructions.

149

Expansion Instructions Section 5-5

5-5 Expansion Instructions

The expansion instructions are a group of instructions that do not have fixed
function codes. The function codes set aside for the expansion instructions can
be reassigned to any of the expansion instructions, if desired. Default function
codes are given for the instructions that have them.

An expansion instruction can be assigned one of available function codes using
the Programming Console’s Expansion Instruction Function Code Assignments
operation. The function codes are: 017, 018, 019, 047, 048, 060 to 069, 087,
088, 089, 114, 115, 116, 160, 161, 162, 180 to 184, 190, 194, 195, 210 to 214,
222, 223, 235, 236, 237, 260, 261, 269, 280, and 281. Refer to 7-2-14 Expansion
Instruction Function Code Assignments for details on assigning function codes.

Refer to the manual for the SYSMAC-CPT Support Software for details on set-
ting function codes using the SYSMAC-CPT Support Software.

Code Mnemonic Name Page
017 (@)ASFT | ASYNCHRONOUS SHIFT REGISTER 191
018 (@)SCAN | CYCLE TIME 339
019 (@)MCMP | MULTI-WORD COMPARE 205
047 (@)LMSG | 32-CHARACTER MESSAGE 342
048 (@)TERM | TERMINAL MODE 343
060 CMPL DOUBLE COMPARE 209
061 (@)MPRF | GROUP-2 HIGH-DENSITY 1/O REFRESH 345
062 (@)XFRB | TRANSFER BITS 201
063 (@)LINE COLUMN TO LINE 240
064 (@)COLM | LINE TO COLUMN 241
065 (@)SEC HOURS TO SECONDS 223
066 (@)HMS SECONDS TO HOURS 224
067 (@)BCNT | BIT COUNTER 346
068 (@)BCMP | BLOCK COMPARE 210
069 (@)APR ARITHMETIC PROCESS 300
087 TTIM TOTALIZING TIMER 177
088 ZCP AREA RANGE COMPARE 213
089 (@)INT INTERRUPT CONTROL 325
114 CPS SIGNED BINARY COMPARE 215
115 CPSL DOUBLE SIGNED BINARY COMPARE 216
116 ZCPL DOUBLE AREA RANGE COMPARE 214
160 (@)NEG 2'S COMPLEMENT 242
161 (@)NEGL | DOUBLE 2’'S COMPLEMENT 243
162 (@)HEX ASCII-TO-HEX CONVERSION 235
180 (@)FCs FCS CALCULATE 346
181 (@)SRCH | DATA SEARCH 352
182 (@)MAX FIND MAXIMUM 294
183 (@)MIN FIND MINIMUM 295
184 (@)SUM SUM CALCULATE 299
190 PID PID CONTROL 303
194 (@)SCL SCALING 238
195 AVG AVERAGE VALUE 297
210 DSW DIGITAL SWITCH INPUT 376
211 (@)TKY TEN KEY INPUT 380
212 HKY HEXADECIMAL KEY INPUT 382
213 MTR MATRIX INPUT 385

150

Coding Right-hand Instructions Section 5-6

Code Mnemonic Name Page
214 7SEG 7-SEGMENT DISPLAY OUTPUT 387
222 (@)IORD | SPECIAL I/O UNIT READ 391
223 (@)IOWR | SPECIAL I/O UNIT WRITE 392
235 (@)RXD RECEIVE 368
236 (@)TXD TRANSMIT 370
237 (@)STUP | CHANGE RS-232C SETUP 373
260 (@)PMCR | PROTOCOL MACRO 374
269 FPD FAILURE POINT DETECT 348
280 (@)XDMR | EXPANSION DM READ 353
281 (@)EMBC | SELECT EM BANK 355

The following expansion instructions can also be used if they are allocated any
of the above function codes to replace the default instructions.

Mnemonic Name Page
(@)ADBL | DOUBLE BINARY ADD 286
(@)SBBL | DOUBLE BINARY SUBTRACT 288
(@)MBSL | DOUBLE SIGNED BINARY MULTIPLY 291
(@)DBSL | DOUBLE SIGNED BINARY DIVIDE 293
(@)MBS SIGNED BINARY MULTIPLY 290
(@)DBS SIGNED BINARY DIVIDE 292
(@)BXF2 | EM BANK TRANSFER 203
(@)IEMS INDIRECT EM ADDRESSING 354
(@)XFR2 | EM BLOCK TRANSFER 202

5-6 Coding Right-hand Instructions

Writing mnemonic code for ladder instructions is described in Section 4 Writing
and Inputting the Program. Converting the information in the ladder diagram
symbol for all other instructions follows the same pattern, as described below,
and is not specified for each instruction individually.

The first word of any instruction defines the instruction and provides any defin-
ers. If the instruction requires only a signal bit operand with no definer, the bit
operand is also placed on the same line as the mnemonic. All other operands are
placed on lines after the instruction line, one operand per line and in the same
order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the data column is left blank for
first line. It is a good idea to cross through any blank data column spaces (for all
instruction words that do not require data) so that the data column can be quickly
scanned to see if any addresses have been left out.

If an IR or SR address is used in the data column, the left side of the column is left
blank. If any other data area is used, the data area abbreviation is placed on the
left side and the address is place on the right side. If a constant to be input, the
number symbol (#) is placed on the left side of the data column and the number
to be input is placed on the right side. Any numbers input as definers in the in-
struction word do not require the number symbol on the right side. TC bits, once
defined as a timer or counter, take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the func-
tion code, which will be necessary when inputting the instruction via the Pro-
gramming Console. Also be sure to designate the differentiated instruction with
the @ symbol.

151

Coding Right-hand Instructions Section 5-6

The following diagram and corresponding mnemonic code illustrates the points
described above.

00000 00001 Address|Instruction Data
1} 1} PIFU(013) 22500 00000 [LD 00000
°|°:)°2 00001 AND 00001
" 00002 OR 00002
ogn| 00 0?2}90 2|2?00 00003 |DIFU(013) 22500
I A I BONT(067) 00004 [LD 00100
01001 01002 LR 6300 #0001
004 00005 AND NOT 00200
HR 00 00006 LD 01001
00007 AND NOT 01002
00008 AND NOT LR 6300
0??05 00009 ORLD —
" TIM 000 00010 |AND 22500
#0150
00011 [BCNT(067) —
TII\:I |ooo #0001
] MOV(021)
004
HR 00
LR 00 Al
00012 LD 00005
00013 TIM 000
HR 0015
: : 00500 #0150
00014 LD TIM 000
00015 MOV(021) —
HR 00
LR 00
00016 LD HR 0015
00017 OUT NOT 00500

152

Coding Right-hand Instructions Section 5-6

Multiple Instruction Lines If a right-hand instruction requires multiple instruction lines (such as
KEEP(011)), all of the lines for the instruction are entered before the right-hand
instruction. Each of the lines for the instruction is coded, starting with LD or LD
NOT, to form ‘logic blocks’ that are combined by the right-hand instruction. An
example of this for SFT(010) is shown below.

00000 00001 Addressl Instruction | Data
I I SFT(010) 00000 LD 00000
00002
11 P 00001 AND 00001
11 HR 00
00100 00200 22500 00002 |LD 00002
11 [y 11 R | HrRoo
3 Al " 00003 | LD 00100
01001 01002 LR 6300
00004 | AND NOT 00200
HR 0015 00005 |LD 01001
: : 00500 00006 | AND NOT 01002
00007 | AND NOT LR 6300
00008 |ORLD —
00009 | AND 22500
00010 | SFT(010) —
HR 00
HR 00
00011 LD HR 0015
00012 | OUT NOT 00500
END(001) When you have finished coding the program, make sure you have placed

END(001) at the last address.

153

Instruction Set Lists

Section 5-7

5-7

Instruction Set Lists

This section provides tables of the instructions in the C200HX/HG/HE. The first
table can be used to find instructions by function code. The second table can be
used to find instruction by mnemonic. In both tables, the @ symbol indicates in-
structions with differentiated variations.

5-7-1 Function Codes

The following table lists the instructions that have fixed function codes and the
expansion instructions that have default function codes. Each instruction is
listed by mnemonic and by instruction name. Use the numbers in the leftmost
column as the left digits and the number in the column heading as the right digit
of the function code.

Left Right digit
digits 0 1 2 3 4 5 6 7 8 9
00 NOP END IL ILC JMP JME (@) FAL FALS STEP SNXT
NO END INTERLOCK INTERLOCK JUMP JUMP END FAILURE SEVERE STEP STEP START
OPERATION CLEAR ALARM AND FAILURE DEFINE
RESET ALARM
01 SFT KEEP CNTR DIFU DIFD TIMH (@) WSFT (@) ASFT (@) SCAN (@) MCMP
SHIFT KEEP REVERS- DIFFEREN- DIFFEREN- HIGH- WORD ASYNCHRO- CYCLE TIME MULTI-
REGISTER IBLE TIATE UP TIATE DOWN | SPEED SHIFT NOUS SHIFT WORD
COUNTER TIMER REGISTER COMPARE
02 CMP (@) Mov (@) MVN (@) BIN (@)BCD (@) ASL (@) ASR (@) ROL (@) ROR (@)com
COMPARE MOVE MOVE NOT BCD TO BINARY TO SHIFT LEFT SHIFT ROTATE ROTATE COMPLE-
BINARY BCD RIGHT LEFT RIGHT MENT
03 (@) ADD (@)suB (@) MUL (@) DIv (@) ANDW (@) ORW (@) XORW (@) XNRW (@)INC (@) DEC
BCD ADD BCD BCD BCD LOGICAL LOGICAL OR EXCLUSIVE EXCLUSIVE INCREMENT DECRE-
SUBTRACT MULTIPLY DIVIDE AND OR NOR MENT
04 |(e@sTtc (@) cLe - TRSM (@) MSG (@) LMSG (@) TERM
SET CARRY CLEAR TRACE MESSAGE LONG MES- TERMINAL
CARRY MEMORY DISPLAY SAGE MODE
SAMPLE
05 (@) ADB (@) sBB (@) MLB (@)DbVvB (@) ADDL (@) SuBL (@) MuLL (@) DIVL (@) BINL (@) BCDL
BINARY ADD BINARY BINARY BINARY DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE
SUBTRACT MULTIPLY DIVIDE BCD ADD BCD BCD BCD BCD-TO- BINARY-TO-
SUBTRACT MULTIPLY DIVIDE DOUBLE DOUBLE
BINARY BCD
06 CMPL (@) MPRF (@) XFRB (@) LINE (@) coLm (@) SEC (@) HMS (@) BCNT (@) BCMP (@) APR
DOUBLE GROUP-2 TRANSFER COLUMN TO LINE TO HOURS-TO- SECONDS- BIT BLOCK ARITHMETIC
COMPARE HIGH-DEN- BITS LINE COLUMN SECONDS TO-HOURS COUNTER COMPARE PROCESS
SITY I/0
REFRESH
07 | (@) xFER (@) BSET (@) ROOT (@) XCHG (@) SLD (@) SRD (@) MLPX (@) DMPX (@) SDEC (@) FDIV
BLOCK BLOCK SET SQUARE DATA ONE DIGIT ONE DIGIT 4-TO-16/ 16-TO-4/ 7-SEGMENT FLOATING
TRANSFER ROOT EXCHANGE SHIFT LEFT SHIFT 8-TO-256 256-TO-8 DECODER POINT
RIGHT DECODER ENCODER DIVIDE
08 | (@nDisT (@) coLL (@ MOVB | (@ MOVD | (@) SFTR (@) TCMP (@) ASC ™M ZCP (@) INT
SINGLE DATA MOVE BIT MOVE DIGIT REVERS- TABLE ASCII TOTALIZING AREA INTERRUPT
WORD COLLECT IBLE SHIFT COMPARE CONVERT COUNTER RANGE CONTROL
DISTRIBUTE REGISTER COMPARE
09 | (@) SEND (@) SBS SBN RET (@) WDT - (@) IORF (@) RECV (@) MCRO
NETWORK | SUBROU- SUBROU- SUBROU- WATCHDOG) NETWORK | MACRO
SEND TINE TINE TINE TIMER REFRESH RECEIVE
ENTRY DEFINE RETURN REFRESH
11 |- (@) CPS (@) CPSL (@) zCPL - -
SIGNED DOUBLE DOUBLE
BINARY SIGNED AREA RAN-
COMPARE BINARY GE
COMPARE COMPARE
12 |- - - - (@) BXFR - -
EM BANK
TRANSFER
16 | (@) NEG (@) NEGL (@) HEX - - -
2'S COM- DOUBLE 2'S ASCII-TO-
PLEMENT COMPLE- HEXADECI-
MENT MAL
18 | (@)Fcs (@) SRCH (@) MAX (@) MIN (@) SuM - - -
FRAME DATA FIND FIND SUM
CHECKSUM SEARCH MAXIMUM MINIMUM
19 | (@PD (@) scL (@) AVG - -
PID SCALING AVERAGE
CONTROL VALUE
21 DSW TKY HKY MTR 7SEG - - -
DIGITAL TEN KEY HEXADEC. MATRIX 7-SEGMENT
SWITCH INPUT KEY INPUT INPUT DISPLAY
INPUT OUTPUT
22 |- - (@) IORD (@) IOWR - - -
SPECIAL I/0O SPECIAL I/O
UNIT READ UNIT WRITE

154

Instruction Set Lists

Section 5-7

Left Right digit
digits 0 1 2 3 4 5 6 7 8 9
23 |- (@) RXD (@) TXD (@) STUP
RECEIVE TRANSMIT CHANGE
RS-232C
SETUP
26 | (@) PMCR (@) CMCR FPD
PROTOCOL PCMCIA FAILURE
MACRO CARD POINT
MACRO DETECTION
28 | (@) XDMR (@) EMBC
EXPANSION SELECT EM
DM READ BANK
30 = =L = =SL --- <> <>L < >8 <>SL
EQUAL DOUBLE SIGNED DOUBLE NOT EQUAL DOUBLE SIGNED NOT | DOUBLE
EQUAL EQUAL SIGNED NOT EQUAL EQUAL SIGNED NOT
EQUAL EQUAL
31 < <L <S <SL == <= <=L <=S <=SL -
LESS THAN DOUBLE SIGNED DOUBLE LESS THAN DOUBLE SIGNED DOUBLE
LESS THAN LESS THAN SIGNED OR EQUAL LESS THAN LESS THAN SIGNED
LESS THAN OR EQUAL OR EQUAL LESS THAN
OR EQUAL
32 > >L >S >SL - >= >=L >=S >=SL -
GREATER DOUBLE SIGNED DOUBLE GREATER DOUBLE SIGNED DOUBLE
THAN GREATER GREATER SIGNED THAN OR GREATER GREATER SIGNED
THAN THAN GREATER EQUAL THAN OR THAN OR GREATER
THAN EQUAL EQUAL THAN OR
EQUAL
35 | TST TSTN
BIT TEST BIT TEST
40 |(@+ (@) +L (@) +C (@) +CL (@) +B (@) +BL (@) +BC (@) +BCL
SIGNED DOUBLE SIGNED DOUBLE SIGNED DOUBLE BCD ADD DOUBLE
BINARY ADD | SIGNED BINARY ADD | SIGNED BCD ADD BCD ADD W/CARRY BCD ADD
BINARY ADD | W/CARRY BINARY ADD W/CARRY
W/CARRY
41 (@) - (@)-L (@)-C (@)-CL (@)-B (@)-BL (@)-BC (@)-BCL -
SIGNED DOUBLE SIGNED DOUBLE BCD DOUBLE BCD SUB- DOUBLE
BINARY SIGNED BINARY SIGNED SUBTRACT BCD TRACT BCD
SUBTRACT BINARY SUBTRACT BINARY SUBTRACT W/CARRY SUBTRACT
SUBTRACT W/CARRY SUBTRACT W/CARRY
W/CARRY
42 (@)* (@)*L (@)*u (@)*uL (@)*B (@) *BL - -
SIGNED DOUBLE UNSIGNED DOUBLE UN- | BCD DOUBLE
BINARY SIGNED BINARY SIGNED MULTIPLY BCD
MULTIPLY BINARY MULTIPLY BINARY MULTIPLY
MULTIPLY MULTIPLY
43 (@)/ (@) /L (@) (@) /UL (@)/B (@) /BL - -
SIGNED DOUBLE UNSIGNED DOUBLE UN- | BCD DIVIDE DOUBLE
BINARY SIGNED BINARY DI- SIGNED BCD DIVIDE
DIVIDE BINARY VIDE BINARY
DIVIDE DIVIDE
48 (@) ADBL (@) sBBL (@) MBSL (@) DBSL (@) MBS (@) DBS - -
DOUBLE DOUBLE DOUBLE DOUBLE SIGNED SIGNED
BINARY ADD | BINARY SIGNED SIGNED BINARY BINARY DI-
SUBTRACT BINARY BINARY DI- MULTIPLY VIDE
MULTIPLY VIDE

155

Instruction Set Lists Section 5-7

5-7-2 Alphabetic List by Mnemonic

The following table lists the C200HX/HG/HE instructions in alphabetical order.
Default function codes for expansion instructions are in parentheses. (A code of
(—) is shown for expansion instructions without default function codes.)

Mnemonic Code | Words Name Page
7SEG (214) |5 7-SEGMENT DISPLAY OUTPUT 387
ADB (@) 050 4 BINARY ADD 280
ADBL (@) —) |4 DOUBLE BINARY ADD 286
ADD (@) 030 4 BCD ADD 266
ADDL (@) 054 4 DOUBLE BCD ADD 267
AND —_— 1 AND 160
AND LD — 1 AND LOAD 161
AND NOT — 1 AND NOT 160
ANDW (@) 034 4 LOGICAL AND 314
APR (@) (069) |4 ARITHMETIC PROCESS 300
ASC (@) 086 4 ASCII CONVERT 234
ASFT(@) (017) |4 ASYNCHRONOUS SHIFT REGISTER 191
ASL (@) 025 2 ARITHMETIC SHIFT LEFT 187
ASR (@) 026 2 ARITHMETIC SHIFT RIGHT 187
AVG (@) (195) |5 AVERAGE VALUE 297
BCD (@) 024 3 BINARY TO BCD 221
BCDL (@) 059 3 DOUBLE BINARY-TO-DOUBLE BCD 222
BCMP (@) (068) |4 BLOCK COMPARE 210
BCNT (@) (067) |4 BIT COUNTER 346
BIN (@) 023 3 BCD-TO-BINARY 220
BINL (@) 058 3 DOUBLE BCD-TO-DOUBLE BINARY 221
BSET (@) 071 4 BLOCK SET 193
BXF2 (@) (—) |4 BLOCK TRANSFER TO OTHER EM BANK 202
BXFR (@) (125) |4 EM BANK TRANSFER 204
CLC (@) 041 1 CLEAR CARRY 265
CMCR (@) 261 5 PCMCIA CARD MACRO 393
CMP 020 3 COMPARE 206
CMPL (060) |4 DOUBLE COMPARE 209
CNT —_— 2 COUNTER 178
CNTR 012 3 REVERSIBLE COUNTER 181
COLL (@) 081 4 DATA COLLECT 197
CoLM(@) (064) |4 LINE TO COLUMN 241
COM (@) 029 2 COMPLEMENT 313
CPS (114) |4 SIGNED BINARY COMPARE 215
CPSL (115) |4 DOUBLE SIGNED BINARY COMPARE 216
DBS (@) —) |4 SIGNED BINARY DIVIDE 292
DBSL (@) —) |4 DOUBLE SIGNED BINARY DIVIDE 293
DEC (@) 039 2 BCD DECREMENT 265
DIFD 014 2 DIFFERENTIATE DOWN 162
DIFU 013 2 DIFFERENTIATE UP 162
DIST (@) 080 4 SINGLE WORD DISTRIBUTE 196
DIV (@) 033 4 BCD DIVIDE 273
DIVL (@) 057 4 DOUBLE BCD DIVIDE 274
DMPX (@) 077 4 16-TO-4/256-TO-8 ENCODER 228

156

Instruction Set Lists

Section

5-7

Mnemonic Code | Words Name Page
DSW (210) |5 DIGITAL SWITCH 376
DVB (@) 053 4 BINARY DIVIDE 285
EMBC (@) 281 2 SELECT EM BANK 355
END 001 1 END 170
FAL (@) 006 2 FAILURE ALARM AND RESET 338
FALS 007 2 SEVERE FAILURE ALARM 338
FCS (@) (180) |5 FCS CALCULATE 346
FDIV (@) 079 4 FLOATING POINT DIVIDE 275
FPD (269) |5 FAILURE POINT DETECT 348
HEX (@) 162 5 ASCII-TO-HEXADECIMAL 235
HKY (212) |5 HEXADECIMAL KEY INPUT 382
HMS (@) 066 4 SECONDS TO HOURS 224
IEMS (@) —) |4 INDIRECT EM ADDRESSING 354
IL 002 1 INTERLOCK 167
ILC 003 1 INTERLOCK CLEAR 167
INC (@) 038 2 INCREMENT 265
INT (@) (089) |4 INTERRUPT CONTROL 325
IORD (@) 222 5 SPECIAL I/0 UNIT READ 391
IORF (@) 097 3 I/O REFRESH 344
IOWR (@) 223 5 SPECIAL I/O UNIT WRITE 392
JME 005 2 JUMP END 169
JMP 004 2 JUMP 169
KEEP 011 2 KEEP 165
LD —_— 1 LOAD 160
LD NOT —_— 1 LOAD NOT 160
LINE (@) (063) |4 COLUMN TO LINE 240
LMSG (@) (047) |4 32-CHARACTER MESSAGE 342
MAX (@) (182) |5 FIND MAXIMUM 294
MBS (@) (—) |4 SIGNED BINARY MULTIPLY 290
MBSL (@) (—) |4 DOUBLE SIGNED BINARY MULTIPLY 291
MCMP (@) (019) |4 MULTI-WORD COMPARE 205
MCRO (@) 099 4 MACRO 323
MIN (@) (183) |5 FIND MINIMUM 295
MLB (@) 052 4 BINARY MULTIPLY 285
MLPX (@) 076 4 4-TO-16/8-TO-256 DECODER 225
MOV (@) 021 3 MOVE 192
MOVB (@) 082 4 MOVE BIT 200
MOVD (@) 083 4 MOVE DIGIT 200
MPRF (@) (061) |4 GROUP-2 HIGH-DENSITY I/O0 REFRESH 345
MSG (@) 046 2 MESSAGE 341
MTR (213) |5 MATRIX INPUT 385
MUL (@) 032 4 BCD MULTIPLY 271
MULL (@) 056 4 DOUBLE BCD MULTIPLY 272
MVN (@) 022 3 MOVE NOT 193
NEG (@) (160) |4 2'S COMPLEMENT 242
NEGL (@) (161) |4 DOUBLE 2’'S COMPLEMENT 243
NOP 000 1 NO OPERATION 170
OR — 1 OR 160
ORLD — 1 OR LOAD 161

157

Instruction Set Lists

Section

5-7

Mnemonic Code | Words Name Page
OR NOT —_— 1 OR NOT 160
ORW (@) 035 4 LOGICAL OR 315
ouT —_— 2 OUTPUT 161
OUT NOT —_— 2 OUTPUT NOT 161
PID (@) (190) |5 PID CONTROL 303
PMCR (@) 260 5 PROTOCOL MACRO 374
RECV (@) 098 4 NETWORK RECEIVE 362
RET 093 1 SUBROUTINE RETURN 322
ROL (@) 027 2 ROTATE LEFT 188
ROOT (@) 072 3 SQUARE ROOT 278
ROR (@) 028 2 ROTATE RIGHT 188
RSET —_— 2 RESET 164
RXD(@) (235) |5 RECEIVE 368
SBB (@) 051 4 BINARY SUBTRACT 282
SBBL (@) —) |4 DOUBLE BINARY SUBTRACT 288
SBN 092 2 SUBROUTINE DEFINE 322
SBS (@) 091 2 SUBROUTINE ENTRY 321
SCAN (@) (o18) |4 CYCLE TIME 339
SCL (@) (194) |5 SCALING 238
SDEC (@) 078 4 7-SEGMENT DECODER 231
SEC (@) (065) |4 HOURS TO SECONDS 223
SEND (@) 090 4 NETWORK SEND 356
SET — 2 SET 164
SFT 010 3 SHIFT REGISTER 183
SFTR (@) 084 4 REVERSIBLE SHIFT REGISTER 185
SLD (@) 074 3 ONE DIGIT SHIFT LEFT 189
SNXT 009 2 STEP START 329
SRCH (@) (181) |5 DATA SEARCH 352
SRD (@) 075 3 ONE DIGIT SHIFT RIGHT 189
STC (@) 040 1 SET CARRY 265
STEP 008 2 STEP DEFINE 329
STUP (@) 237 4 CHANGE RS-232C SETUP 373
SUB (@) 031 4 BCD SUBTRACT 268
SUBL (@) 055 4 DOUBLE BCD SUBTRACT 270
SUM (@) (184) |5 SUM CALCULATION 299
TCMP (@) 085 4 TABLE COMPARE 212
TERM (@) (048) |4 TERMINAL MODE 343
TIM —_— 2 TIMER 171
TIMH 015 3 HIGH-SPEED TIMER 176
TKY (211) |5 TEN KEY INPUT 380
TRSM 045 1 TRACE MEMORY SAMPLE 340
TST 350 5 BIT TEST 166
TSTN 351 5 BIT TEST NOT 166
TTIM 087 4 TOTALIZING TIMER 177
TXD (@) (236) |5 TRANSMIT 370
WDT (@) 094 2 WATCHDOG TIMER REFRESH 344
WSFT (@) 016 3 WORD SHIFT 190
XCHG (@) 073 3 DATA EXCHANGE 195
XDMR (@) (280) |5 EXPANSION DM READ 353

158

Instruction Set Lists

Section

5-7

Mnemonic Code | Words Name Page
XFER (@) 070 4 BLOCK TRANSFER 195
XFR2 (@) —) |4 EM BLOCK TRANSFER 202
XFRB (@) (062) |4 TRANSFER BITS 201
XNRW (@) 037 4 EXCLUSIVE NOR 317
XORW (@) 036 4 EXCLUSIVE OR 316
ZCP (088) |4 AREA RANGE COMPARE 213
ZCPL (116) |5 DOUBLE AREA RANGE COMPARE 214
= 300 4 EQUAL 217
=L 301 4 DOUBLE EQUAL 217
=S 302 4 SIGNED EQUAL 217
=SL 303 4 DOUBLE SIGNED EQUAL 217
<> 305 4 NOT EQUAL 217
<L 306 4 DOUBLE NOT EQUAL 217
<>S 307 4 SIGNED NOT EQUAL 217
<>SL 308 4 DOUBLE SIGNED NOT EQUAL 217
< 310 4 LESS THAN 217
<L 311 4 DOUBLE LESS THAN 217
<S 312 4 SIGNED LESS THAN 217
<SL 313 4 DOUBLE SIGNED LESS THAN 217
<= 315 4 LESS THAN OR EQUAL 217
<=L 316 4 DOUBLE LESS THAN OR EQUAL 217
<=S 317 4 SIGNED LESS THAN OR EQUAL 217
<=SL 318 4 DOUBLE SIGNED LESS THAN OR EQUAL 217
> 320 4 GREATER THAN 217
>L 321 4 DOUBLE GREATER THAN 217
>S 322 4 SIGNED GREATER THAN 217
>SL 323 4 DOUBLE SIGNED GREATER THAN 217
>= 325 4 GREATER THAN OR EQUAL 217
>=L 326 4 DOUBLE GREATER THAN OR EQUAL 217
>=S 327 4 SIGNED GREATER THAN OR EQUAL 217
>=SL 328 4 DOUBLE SIGNED GREATER THAN OR EQUAL 217

159

Ladder Diagram Instructions Section 5-8

5-8 Ladder Diagram Instructions

Ladder Diagram instructions include Ladder instructions and Logic Block
instructions and correspond to the conditions on the ladder diagram. Logic block
instructions are used to relate more complex parts.

5-8-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

LOAD -LD

LOAD NOT - LD NOT

AND - AND

AND NOT - AND NOT

OR -OR

OR NOT - OR NOT

Limitations

Description

Flags

160

Ladder Symbols Operand Data Areas

| B B: Bit
L
I

IR, SR, AR, HR, TC, LR, TR

| B B: Bit
[p4
| Al IR, SR, AR, HR, TC, LR
B B: Bit

IR, SR, AR, HR, TC, LR

B: Bit

IR, SR, AR, HR, TC, LR

B: Bit
B
11 IR, SR, AR, HR, TC, LR
LA
B: Bit
B
1K IR, SR, AR, HR, TC, LR

There is no limit to the number of any of these instructions, or restrictions in the
order in which they must be used, as long as the memory capacity of the PC is
not exceeded.

These six basic instructions correspond to the conditions on a ladder diagram.
As described in Section 4 Writing and Inputting the Program, the status of the
bits assigned to each instruction determines the execution conditions for all
other instructions. Each of these instructions and each bit address can be used
as many times as required. Each can be used in as many of these instructions as
required.

The status of the bit operand (B) assigned to LD or LD NOT determines the first
execution condition. AND takes the logical AND between the execution condi-
tion and the status of its bit operand; AND NOT, the logical AND between the
execution condition and the inverse of the status of its bit operand. OR takes the
logical OR between the execution condition and the status of its bit operand; OR
NOT, the logical OR between the execution condition and the inverse of the
status of its bit operand. The ladder symbol for loading TR bits is different from
that shown above. Refer to 4-4-3 Ladder Instructions for details.

There are no flags affected by these instructions.

Bit Control Instructions Section 5-9

5-8-2 AND LOAD and OR LOAD
AND LOAD - AND LD

. J?c:'oo' e o'?cl)'oz' X

o —

Ladder Symbol ' o000t ' 00003

:_ : : [:_ }]I/ [
ORLOAD-ORLD e e e mmmme e,
] 00000 00001 [
" 1L | L "
1 P 4
Ladder Symbol LTTTTTITIIILILILY
fl 00002 00003]
LY LI

Description When instructions are combined into blocks that cannot be logically combined

using only OR and AND operations, AND LD and OR LD are used. Whereas
AND and OR operations logically combine a bit status and an execution condi-
tion, AND LD and OR LD logically combine two execution conditions, the current
one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR LD
instructions, nor are they necessary when inputting ladder diagrams directly, as
is possible from SYSMAC-CPT Support Software. They are required, however,
to convert the program to and input it in mnemonic form. The procedures for
these, limitations for different procedures, and examples are provided in 4-7 In-
putting, Modifying, and Checking the Program.

In order to reduce the number of programming instructions required, a basic un-
derstanding of logic block instructions is required. For an introduction to logic
blocks, refer to 4-4-6 Logic Block Instructions.

Flags There are no flags affected by these instructions.

5-9 Bit Control Instructions

There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(013), DIFD(014), and KEEP(011).
These instructions are used to turn bits ON and OFF in different ways.

5-9-1 OUTPUT and OUTPUT NOT - OUT and OUT NOT

OUTPUT - OUT
Ladder Symbol Operand Data Areas
B: Bit
B
Q IR, SR, AR, HR, LR, TR
OUTPUT NOT - OUT NOT
Ladder Symbol Operand Data Areas
B: Bit
B
IR, SR, AR, HR, LR
Limitations Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for detalils.
Description OUT and OUT NOT are used to control the status of the designated bit according

to the execution condition.

161

Bit Control Instructions

Section 5-9

Flags

OUT turns ON the designated bit for an ON execution condition, and turns OFF
the designated bit for an OFF execution condition. With a TR bit, OUT appears at
a branching point rather than at the end of an instruction line. Refer to 4-7-7
Branching Instruction Lines for detalils.

OUT NOT turns ON the designated bit for a OFF execution condition, and turns
OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF bits
that are assigned to conditions on the ladder diagram, thus determining execu-
tion conditions for other instructions. This is particularly helpful and allows a
complex set of conditions to be used to control the status of a single work bit, and
then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-14-1 TIMER — TIM for
details.

There are no flags affected by these instructions.

5-9-2 DIFFERENTIATE UP and DOWN - DIFU(013) and DIFD(014)

Limitations

Description

Flags

162

Ladder Symbols Operand Data Areas

— DIFUO13)B B: Bit

IR, AR, HR, LR, SR

—— DIFD(014) B B: Bit

IR, AR, HR, LR, SR

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for detalils.

DIFU(013) and DIFD(014) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(013) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and the
current one is ON, DIFU(013) will turn ON the designated bit. If the previous exe-
cution condition was ON and the current execution condition is either ON or OFF,
DIFU(013) will either turn the designated bit OFF or leave it OFF (i.e., if the des-
ignated bit is already OFF). The designated bit will thus never be ON for longer
than one cycle, assuming it is executed each cycle (see Precautions, below).

Whenever executed, DIFD(014) compares its current execution with the previ-
ous execution condition. If the previous execution condition was ON and the cur-
rent one is OFF, DIFD(014) will turn ON the designated bit. If the previous execu-
tion condition was OFF and the current execution condition is either ON or OFF,
DIFD(014) will either turn the designated bit OFF or leave it OFF. The designated
bit will thus never be ON for longer than one cycle, assuming it is executed each
cycle (see Precautions, below).

These instructions are used when differentiated instructions (i.e., those prefixed
with an @) are not available and single-cycle execution of a particular instruction
is desired. They can also be used with non-differentiated forms of instructions
that have differentiated forms when their use will simplify programming. Exam-
ples of these are shown below.

There are no flags affected by these instructions.

Bit Control Instructions

Section 5-9

Precautions

Example 1:
When There is No
Differentiated Instruction

00000

DIFU(013) and DIFD(014) operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines. Re-
ferto 5-10 INTERLOCK and INTERLOCK CLEAR — IL(002) and ILC(003), 5-11
JUMP and JUMP END — JMP(004) and JME(005), and 5-24 Subroutines and
Interrupt Control for details.

In diagram A, below, whenever CMP(020) is executed with an ON execution
condition it will compare the contents of the two operand words (HR 10 and DM
0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the execution
condition remains ON, flag status may be changed each cycle if the content of
one or both operands change. Diagram B, however, is an example of how
DIFU(013) can be used to ensure that CMP(020) is executed only once each
time the desired execution condition goes ON.

00000

22500

Example 2:
Simplifying Programming

00000

Address | Instruction Operands
CMP(020)
TR 10 00000 | LD 00000
Diagram A 7 0000 00001 | CMP(020) s
DM 0000
DIFU(13) 22500 Address | Instruction Operands
00000 | LD 00000
CMP(020) 00001 | DIFU(013) 22500
HR 10 00002 | LD 22500
Diagram B DM 0000 00003 | CMP(020)
HR 10
DM 0000

Although a differentiated form of MOV(021) is available, the following diagram
would be very complicated to draw using it because only one of the conditions
determining the execution condition for MOV(021) requires differentiated treat-
ment.

22500

Address | Instruction Operands
:DIFU(013) 22500|

Il
Al
00001 00002 00003
00004 00005

00000 LD 00000
00001 DIFU(013) 22500
MOV(021) 00002 LD 22500
HR 10 00003 LD 00001
DM 0000 00004 | AND NOT 00002
00005 | AND NOT 00003
00006 OR LD
00007 LD 00004
00008 | AND NOT 00005
00009 OR LD
00010 | MOV(021)
HR 10
DM 0000

163

Bit Control Instructions

Section 5-9

5-9-3 SET and RESET - SET and RSET

Description

Precautions

Flags

Examples

00000

Note

Ladder Symbols Operand Data Areas
SETB B: Bit
IR, SR, AR, HR, LR
—— RSETB B: Bt

IR, SR, AR, HR, LR

SET turns the operand bit ON when the execution condition is ON, and does not
affect the status of the operand bit when the execution condition is OFF. RSET
turns the operand bit OFF when the execution condition is ON, and does not af-
fect the status of the operand bit when the execution condition is OFF.

The operation of SET differs from that of OUT because the OUT instruction turns
the operand bit OFF when its execution condition is OFF. Likewise, RSET differs
from OUT NOT because OUT NOT turns the operand bit ON when its execution
condition is OFF.

The instructions SET and RESET are input as follows:

SET: | FUN I lpLij | Operand | IWRITEI
SET

RESETI FUN l l REC ‘. | Operand | IWRITEI
RESET

The status of operand bits for SET and RSET programmed between IL(002) and
ILC(003) or JMP(004) and JME(005) will not change when the interlock or jump
condition is met (i.e., when IL(002) or JMP(004) is executed with an OFF execu-
tion condition).

There are no flags affected by these instructions.

The following examples demonstrate the difference between OUT and SET/
RSET. In the first example (Diagram A), IR 10000 will be turned ON or OFF
whenever IR 00000 goes ON or OFF.

In the second example (Diagram B), IR 10000 will be turned ON when IR 00001
goes ON and will remain ON (even if IR 00001 goes OFF) until IR 00002 goes
ON.

164

1 10000 Address | Instruction Operands

. 00000 | LD 00000
Diagram A 00001 | OUT 10000

00001

Nl

" @l Address | Instruction Operands

otlj?oz 00000 | LD 00001

' @l 00001 | SET 10000

. 00002 | LD 00002

Diagram B 00003 | RSET 10000

Bit Control Instructions Section 5-9
5-9-4 KEEP - KEEP(011)
Ladder Symbol Operand Data Areas
S
KEEP(011) B: Bit
a B IR, AR, HR, LR

Limitations

Description

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for detalils.

KEEP(011) is used to maintain the status of the designated bit based on two exe-
cution conditions. These execution conditions are labeled S and R. S is the set
input; R, the reset input. KEEP(011) operates like a latching relay that is set by S
and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, regard-
less of whether S stays ON or goes OFF. When R turns ON, the designated bit
will go OFF and stay OFF until reset, regardless of whether R stays ON or goes
OFF. The relationship between execution conditions and KEEP(011) bit status is
shown below.

S execution condition ﬂ [

R execution condition

é i
| i

Status of B

KEEP(011) operates like the self-maintaining bit described in 4-8-3 Self-main-
taining Bits. The following two diagrams would function identically, though the
one using KEEP(011) requires one less instruction to program and would main-
tain status even in an interlocked program section.

00002 00003 Address | Instruction Operands
—| ¥ 00500
! L4 00000 | LD 00002
00500 00001 OR 00500
— 00002 | AND NOT 00003
00003 | ouT 00500
_0|0(|302 s Address | Instruction Operands
: KEEP (O 00000 | LD 00002
00001 [LD 00003
00002 R 00500 00002 | KEEP(011) 00500
ml
Flags There are no flags affected by this instruction.

Precautions

Exercise caution when using a KEEP reset line that is controlled by an external
normally closed device. Never use an input bit in an inverse condition on the re-
set (R) for KEEP(011) when the input device uses an AC power supply. The de-
lay in shutting down the PC’s DC power supply (relative to the AC power supply

165

Bit Control Instructions

Section 5-9

to the input device) can cause the designated bit of KEEP(011) to be reset. This
situation is shown below.

Input Unit

KEEP(011)

NEVER .

A

— :

Bits used in KEEP are not reset in interlocks. Refer to the 5-10 INTERLOCK —
and INTERLOCK CLEAR IL(002) and ILC(003) for details.

Example If a HR bit or an AR bit is used, bit status will be retained even during a power
interruption. KEEP(011) can thus be used to program bits that will maintain
status after restarting the PC following a power interruption. An example of this
that can be used to produce a warning display following a system shutdown for
an emergency situation is shown below. Bits 00002, 00003, and 00004 would be
turned ON to indicate some type of error. Bit 00005 would be turned ON to reset
the warning display. HR 0000, which is turned ON when any one of the three bits
indicates an emergency situation, is used to turn ON the warning indicator
through 00500.

00?02 S Address | Instruction Operands

I KEEP(011) 00000 LD 00002

00003 Indicates 00001 | OR 00003

— emergency iR 0000 00002 | OR 00004
situation

00004 00003 | LD 00005
— R 00004 | KEEP(011) HR 0000

Resat input 00005 | LD HR 0000

00005 00006 | OUT 00500
—

HR |00°° O Activates
—|I 00500 m:gll;r;/g

KEEP(011) can also be combined with TIM to produce delays in turning bits ON
and OFF. Refer to 5-14-1 TIMER — TIM for details.

5-9-5 BIT TEST: TST(350) and TSTN(351)

Ladder Symbols Operand Data Areas
TST(350) — TSTN(351) S: Source word
S S IR, SR, AR, DM, EM, HR, LR
N N N: Bit number
IR, SR, AR, DM, EM, HR, TC, LR, #

Limitations

Description

166

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for detalils.

TST(350) turns ON the execution condition when the specified bit in the speci-
fied word is ON and turns OFF the execution condition when the bit is OFF.

TSTN(351) turns OFF the execution condition when the specified bit in the spe-
cified word is ON and turns ON the execution condition when the bit is OFF.

INTERLOCK and INTERLOCK CLEAR - 11(002) and ILC(003) Section 5-10

The bit position is designated in N between 0000 and 0015 in BCD.

Precautions TST(350) and TSTN(351) cannot be used as right-hand instructions, i.e., anoth-
er instruction must appear between them and the right bus bar.

N must be BCD between 0000 and 0015.

Flags ER: N is not BCD from 0000 to 0015.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

Example In the first instruction line below, when IR 00000 turns ON, TST(350) checks
whether the designated bit (bit 00 in DM 0010) is ON or OFF. In this case, be-
cause it is ON, IR 05000 is turned ON.

In the second instruction line below, when IR 00001 turns ON, TST(350) checks
whether the designated bit (bit 05 in DM 0020) is ON or OFF. In this case, be-
cause it is OFF, IR 05001 is turned ON.

00|0|00 45000 Address | Instruction | Operands
—ir TST(350) 00000 |LD 00000
DM 0010
00001 | TST(350)
#0000
DM 0010
00001 #0000
— TSTN(351) 00002 |OUT 05000
DM 0020 00003 |LD 00001
#0005 00004 |TSTN(351)
DM 0020
#0005
00005 |OUT 05001
1514131211109 8 76 543 2 10
101 1010110110001]
DM 0010
A
Designated bit
1514131211109 8 76 5 4 3 2 1 0
DM 0020 0100101101011 101
A
Designated bit
5-10 INTERLOCK and INTERLOCK CLEAR - 1L(002) and
Ladder Symbol —_ IL(002)
Ladder Symbol — ILC(003)
Description IL(002) is always used in conjunction with ILC(003) to create interlocks. Inter-

locks are used to enable branching in the same way as can be achieved with TR
bits, but treatment of instructions between IL(002) and ILC(003) differs from that
with TR bits when the execution condition for IL(002) is OFF. If the execution
condition of IL(002) is ON, the program will be executed as written, with an ON
execution condition used to start each instruction line from the point where
IL(002) is located through the next ILC(003). Refer to 4-7-7 Branching Instruc-
tion Lines for basic descriptions of both methods.

167

INTERLOCK and INTERLOCK CLEAR - 11(002) and ILC(003) Section 5-10

DIFU(013)
Interlocks

If the execution condition for IL(002) is OFF, the interlocked section between
IL(002) and ILC(003) will be treated as shown in the following table:

Instruction Treatment
OUT and OUT NOT Designated bit turned OFF.
SET and RSET Bit status maintained.
TIM and TIMH(015) Reset.
TTIM(087) PV maintained.
CNT, CNTR(012) PV maintained.
KEEP(011) Bit status maintained.
DIFU(013) and DIFD(014) Not executed (see the following
DIFU(013) and DIFD(014) in Interlocks).
All others Not executed.

IL(002) and ILC(003) do not necessarily have to be used in pairs. IL(002) can be
used several times in a row, with each IL(002) creating an interlocked section
through the next ILC(003). ILC(003) cannot be used unless there is at least one
IL(002) between it and any previous ILC(003).

and DIFD(014) in Changes in the execution condition for a DIFU(013) or DIFD(014) are not re-
corded if the DIFU(013) or DIFD(014) is in an interlocked section and the execu-
tion condition for the IL(002) is OFF. When DIFU(013) or DIFD(014) is execution
in an interlocked section immediately after the execution condition for the
IL(002) has gone ON, the execution condition for the DIFU(013) or DIFD(014)
will be compared to the execution condition that existed before the interlock be-
came effective (i.e., before the interlock condition for IL(002) went OFF). The
ladder diagram and bit status changes for this are shown below. The interlock is
in effect while 00000 is OFF. Notice that 01000 is not turned ON at the point la-
beled A even though 00001 has turned OFF and then back ON.

It Address | Instruction Operands
i | : IL(002) I

00001 00000 LD 00000

: : IIDIFU(013) 01005| 00001 | IL(002)

00002 | LD 00001
[eow | oo00s [DFUGT 01000

00004 | ILC(003)

A
ON
OFF

00000 oFF
00001
-l ‘ |
01000 oFF X .
Precautions There must be an ILC(003) following any one or more IL(002).
Although as many IL(002) instructions as are necessary can be used with one
ILC(003), ILC(003) instructions cannot be used consecutively without at least
one IL(002) in between, i.e., nesting is not possible. Whenever a ILC(003) is
executed, all interlocks between the active ILC(003) and the preceding ILC(003)
are cleared.
When more than one IL(002) is used with a single ILC(003), an error message
will appear when the program check is performed, but execution will proceed
normally.
Flags There are no flags affected by these instructions.

168

JUMP and JUMP END — JMP(004) and JME(005) Section 5-11

Example

The following diagram shows IL(002) being used twice with one ILC(003).

00004

Al

Address | Instruction Operands
@ 00000 | LD 00000
00001 IL(002)
TIM 511
40015 | 00156 00002 | LD 00001
00003 | TIM 511
#0015
@ 00004 | LD 00002
cP 00005 | IL(002)
%QI 00006 | LD 00003
R IR 010 00007 | AND NOT 00004
00008 | LD 00100
00009 | CNT 001
@ 010
00010 | LD 00005
o00s) 00011 ouT 00502
00012 | ILC(003)

When the execution condition for the first IL(002) is OFF, TIM 511 will be reset to
1.5's, CNT 001 will not be changed, and 00502 will be turned OFF. When the
execution condition for the first IL(002) is ON and the execution condition for the
second IL(002) is OFF, TIM 511 will be executed according to the status of
00001, CNT 001 will not be changed, and 00502 will be turned OFF. When the
execution conditions for both the IL(002) are ON, the program will execute as
written.

5-11 JUMP and JUMP END - JMP(004) and JME(005)

Limitations

Description

Ladder Symbols Definer Values

JMP(004) N N: Jump number

(00 to 99)

N: Jump number

—— JME(005) N

(00 to 99)

Jump numbers 01 through 99 may be used only once in JMP(004) and once in
JME(005), i.e., each can be used to define one jump only. Jump number 00 can
be used as many times as desired.

JMP(004) is always used in conjunction with JME(005) to create jumps, i.e., to
skip from one point in a ladder diagram to another point. JMP(004) defines the
point from which the jump will be made; JME(005) defines the destination of the
jump. When the execution condition for JMP(004) in ON, no jump is made and
the program is executed consecutively as written. When the execution condition
for JMP(004) is OFF, a jump is made to the JME(005) with the same jump num-
ber and the instruction following JME(005) is executed next.

If the jump number for JMP(004) is between 01 and 99, jumps, when made, will
go immediately to JME(005) with the same jump number without executing any
instructions in between. The status of timers, counters, bits used in OUT, bits
used in OUT NOT, and all other status bits controlled by the instructions between
JMP(004) and JMP(005) will not be changed. Each of these jump numbers can
be used to define only one jump. Because all of instructions between JMP(004)
and JME(005) are skipped, jump numbers 01 through 99 can be used to reduce
cycle time.

169

NO OPERATION - NOP(000) Section 5-13

DIFU(013) and DIFD(014) in
Jumps

Precautions

Flags

Examples

If the jump number for JMP(004) is 00, the CPU Unit will look for the next
JME(005) with a jump number of 00. To do so, it must search through the pro-
gram, causing a longer cycle time (when the execution condition is OFF) than for
other jumps. The status of timers, counters, bits used in OUT, bits used in OUT
NOT, and all other status controlled by the instructions between JMP(004) 00
and JMP(005) 00 will not be changed. jump number 00 can be used as many
times as desired. A jump from JMP(004) 00 will always go to the next JME(005)
00 in the program. It is thus possible to use JMP(004) 00 consecutively and
match them all with the same JME(005) 00. It makes no sense, however, to use
JME(005) 00 consecutively, because all jumps made to them will end at the first
JME(005) 00.

Although DIFU(013) and DIFD(014) are designed to turn ON the designated bit
for one cycle, they will not necessarily do so when written between JMP(004)
and JME (005). Once either DIFU(013) or DIFD(014) has turned ON a bit, it will
remain ON until the next time DIFU(013) or DIFD(014) is executed again. In nor-
mal programming, this means the next cycle. In a jump, this means the next time
the jump from JMP(004) to JME(005) is not made, i.e., if a bit is turned ON by
DIFU(013) or DIFD(014) and then a jump is made in the next cycle so that
DIFU(013) or DIFD(014) are skipped, the designated bit will remain ON until the
next time the execution condition for the JMP(004) controlling the jump is ON.

When JMP(004) and JME(005) are not used in pairs, an error message will ap-
pear when the program check is performed. Although this message also ap-
pears if JMP(004) 00 and JME(005) 00 are not used in pairs, the program will
execute properly as written.

There are no flags affected by these instructions.

Examples of jump programs are provided in 4-7-8 Jumps.

5-12 END — END(001)

Description

Flags

Ladder Symbol — END(001)

END(001) is required as the last instruction in any program. If there are subrou-
tines, END(001) is placed after the last subroutine. No instruction written after
END(001) will be executed. END(001) can be placed anywhere in the program
to execute all instructions up to that point, as is sometimes done to debug a pro-
gram, but it must be removed to execute the remainder of the program.

If there is no END(001) in the program, no instructions will be executed and the
error message “NO END INST” will appear.

END(001) turns OFF the ER, CY, GR, EQ, and LE Flags.

5-13 NO OPERATION — NOP(000)

Description

Flags

170

NOP(000) is not generally required in programming and there is no ladder sym-
bol for it. When NOP(000) is found in a program, nothing is executed and the
program execution moves to the next instruction. When memory is cleared prior
to programming, NOP(000) is written at all addresses. NOP(000) can be input
through the 00 function code.

There are no flags affected by NOP(000).

Timer and Counter Instructions Section 5-14

5-14 Timer and Counter Instructions

5-14-1 TIMER - TIM

TIM and TIMH are decrementing ON-delay timer instructions which require a TC
number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter in-
struction. Both require a TC number and a SV. Both are also connected to multi-
ple instruction lines which serve as an input signal(s) and are reset.

Any one TC number cannot be defined twice, i.e., once it has been used as the
definer in any of the timer or counter instructions, it cannot be used again. Once
defined, TC numbers can be used as many times as required as operands in
instructions other than timer and counter instructions.

TC numbers run from 000 through 511. No prefix is required when usinga TC
number as a definer in a timer or counter instruction. Once defined as a timer, a
TC number can be prefixed with TIM for use as an operand in certain instruc-
tions. The TIM prefix is used regardless of the timer instruction that was used to
define the timer. Once defined as a counter, a TC number can be prefixed with
CNT for use as an operand in certain instructions. The CNT is also used regard-
less of the counter instruction that was used to define the counter.

TC numbers can be designated as operands that require either bit or word data.
When designated as an operand that requires bit data, the TC number accesses
a bit that functions as a ‘Completion Flag’ that indicates when the time/count has
expired, i.e., the bit, which is normally OFF, will turn ON when the designated SV
has expired. When designated as an operand that requires word data, the TC
number accesses a memory location that holds the present value (PV) of the
timer or counter. The PV of a timer or counter can thus be used as an operand in
CMP(020), or any other instruction for which the TC area is allowed. This is done
by designating the TC number used to define that timer or counter to access the
memory location that holds the PV.

Note that “TIM 000” is used to designate the TIMER instruction defined with TC
number 000, to designate the Completion Flag for this timer, and to designate
the PV of this timer. The meaning of the term in context should be clear, i.e., the
first is always an instruction, the second is always a bit operand, and the third is
always a word operand. The same is true of all other TC numbers prefixed with
TIM or CNT.

An SV can be input as a constant or as a word address in a data area. If an IR
area word assigned to an Input Unit is designated as the word address, the Input
Unit can be wired so that the SV can be set externally through thumbwheel
switches or similar devices. Timers and counters wired in this way can only be
set externally during RUN or MONITOR mode. All SVs, including those set ex-
ternally, must be in BCD.

Definer Values

Ladder Symbol N: TC number

(000 through 511)

Limitations

TIMN
sV

Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, EM, HR, LR, #, SR

SV is between 000.0 and 999.9. The decimal point is not entered.

171

Timer and Counter Instructions Section 5-14

Description

Precautions

Flags

Examples

Example 1:
Basic Application

172

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

TC 000 through TC 015 should not be used in TIM if they are required for
TIMH(015). Refer to 5-14-2 HIGH-SPEED TIMER — TIMH(015) for details.

A timer is activated when its execution condition goes ON and is reset (to SV)
when the execution condition goes OFF. Once activated, TIM measures in units
of 0.1 second from the SV.

If the execution condition remains ON long enough for TIM to time down to zero,
the Completion Flag for the TC number used will turn ON and will remain ON
until TIM is reset (i.e., until its execution condition is goes OFF).

The following figure illustrates the relationship between the execution condition
for TIM and the Completion Flag assigned to it.

ON
oN | .
Completion Flag oFf ' ! ._

' [' [
~— sv — — sv —

Timers in interlocked program sections are reset when the execution condition
for IL(002) is OFF. Power interruptions also reset timers. If a timer that is not re-
set under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-14-4 COUNTER — CNT for details.

Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

Jumps

Never program TIM between JMP(004) 00 and JME(005) 00 with an SV of
#0000. The Completion Flag will turn ON even when the execution condition for
JMP(004) 00 is ON (i.e., even when the program section with TIM is jumped).
TIM can be programmed successfully between JMP(004) and JME(005) as long
as a jump number between 01 and 99 is used.

Step Instructions
Never program TIM between STEP(008) and SNXT(009) with an SV of #0000.
The Completion Flag will turn ON even when the step containing TIM is reset.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. If the SV is set to #0001, because the timer accuracy is 0 to 0.1 s, the
actual time will be a value between 0 and 0.1 s, and the Completion Flag may
turn ON as soon as the timer input goes from OFF to ON. With other values also,
allow for a timer accuracy of 0 to —0.1 s when setting the SV.

ER: SV is not in BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

All of the following examples use OUT in diagrams that would generally be used
to control output bits in the IR area. There is no reason, however, why these dia-
grams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set via
input word 005. Here, 00200 will be turned ON after 00000 goes ON and stays
ON for at least 15 seconds. When 00000 goes OFF, the timer will be reset and
00200 will be turned OFF. When 00001 goes ON, TIM 001 is started from the SV

Timer and Counter Instructions

Section 5-14

provided through IR word 005. Bit 00201 is also turned ON when 00001 goes
ON. When the SV in 005 has expired, 00201 is turned OFF. This bit will also be
turned OFF when TIM 001 is reset, regardless of whether or not SV has expired.

Extended Timers

00000

00000 "
_“ TIM 000 Address | Instruction Operands
40150 | 015.0 00000 | LD 00000
00001 | TIM 000
TIM 000 #0150
00200 00002 | LD TIM 000
00001 00003 ouT 00200
— | TIM 001 00004 | LD 00001
IR005 | IR 005 00005 | TIM 001
005
TIM 001
Y 00201 00006 | AND NOT TIM 001
g
00007 | OUT 00200
Example 2: There are two ways to achieve timers that operate for longer than 999.9 sec-

onds. One method is to program consecutive timers, with the Completion Flag of
each timer used to activate the next timer. A simple example with two 900.0-sec-
ond (15-minute) timers combined to functionally form a 30-minute timer.

_“ TIM 001 Address | Instruction Operands
#9000 | 900.0s 00000 | LD 00000
TIM 001 00001 | TIMm 001
— | TIM 002 #9000
#9000 | 900.0s 00002 |LD TIM 001
00003 | TIM 002
TIM 002 #9000
— | @ 00004 | LD TIM 002
00005 | OUT 00200
In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.
TIM can also be combined with CNT or CNT can be used to count SR area clock
pulse bits to produce longer timers. An example is provided in 5-14-4 COUNTER
— CNT.
Example 3: TIM can be combined with KEEP(011) to delay turning a bit ON and OFF in refer-
ON/OFF Delays ence to a desired execution condition. KEEP(011) is described in 5-9-4 KEEP —

KEEP(011).

To create delays, the Completion Flags for two TIM are used to determine the
execution conditions for setting and reset the bit designated for KEEP(011). The
bit whose manipulation is to be delayed is used in KEEP(011). Turning ON and
OFF the bit designated for KEEP(011) is thus delayed by the SV for the two TIM.
The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after 00000
goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It is neces-
sary to use both 00500 and 00000 to determine the execution condition for TIM

173

Timer and Counter Instructions Section 5-14

002; 00000 in an inverse condition is necessary to reset TIM 002 when 00000
goes ON and 00500 is necessary to activate TIM 002 (when 00000 is OFF).

00000
_| : TIM 001 Address | Instruction Operands
#0050 | 005.0s 00000 | LD 00000
00500 00000 00001 TIM 001
_|| J/i’ TIM 002 #0050
#0030 | 003.0s 00002 | LD 00500
TIM 001 00003 AND NOT 00000
| S 00004 | TIM 002
KEEP(011) #0030
00005 LD TIM 001
00500
1|M|OO2 R 00006 LD TIM 002
! 00007 | KEEP(011) 00500
00000 t t
1 1
1)
]
00500 t
5.0s 3.0s
Example 4: The length of time that a bit is kept ON or OFF can be controlled by combining

One-Shot Bits

TIM with OUT or OUT NO. The following diagram demonstrates how this is pos-
sible. In this example, 00204 would remain ON for 1.5 seconds after 00000 goes
ON regardless of the time 00000 stays ON. This is achieved by using 01000 as a
self-maintaining bit activated by 00000 and turning ON 00204 through it. When
TIM 001 comes ON (i.e., when the SV of TIM 001 has expired), 00204 will be
turned OFF through TIM 001 (i.e., TIM 001 will turn ON which, as an inverse con-
dition, creates an OFF execution condition for OUT 00204).

Y TlM?ﬂ 01000 Address | Instruction Operands
00000 | LD 01000
00000 00001 AND NOT TIM 001
— 00002 | OR 00000
01000 00003 | OUT 01000
_| : TIM 001 00004 | LD 01000
#0015 | 0015 s 00005 | TIM 001
#0015
01000 TIM 001 00006 | LD 01000
— —F 00204 00007 | AND NOT TIM 001
00008 | OUT 00204
00000 | l rl
:
00204

174

15s

15s

Timer and Counter Instructions

Section 5-14

The following one-shot timer may be used to save memory.

ooo=00 TIM 001 Address | Instruction Operands
#0015 | 0015 5 00000 | LD 00000
00001 | OR 00100
00100 TIM 001 00002 | TIM 001
f W @ #0015
00003 | AND NOT TIM 001
00004 | OUT 00100

Example 5:
Flicker Bits

Bits can be programmed to turn ON and OFF at regular intervals while a desig-
nated execution condition is ON by using TIM twice. One TIM functions to turn
ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns the speci-
fied bit ON and OFF. The other TIM functions to control the operation of the first
TIM, i.e., when the first TIM’'s Completion Flag goes ON, the second TIM is
started and when the second TIM’s Completion Flag goes ON, the first TIM is
started.

00000 TIM 002

— 3

TIM 001

TIM 001
#0010

—

TIM 001

TIM 002
#0015

—

00205

Address

Instruction

Operands

00000

LD

00000

00001

AND NOT

TIM 002

00002

TIM

001

#0010

00003

LD

TIM 001

00004

TIM

002

#0015

00005

LD

TIM 001

00006

ouT

00205

00000

00205

00000 25502

1.0s

15s

1.0s 15s

A simpler but less flexible method of creating a flicker bit is to AND one of the SR
area clock pulse bits with the execution condition that is to be ON when the
flicker bit is operating. Although this method does not use TIM, it is included here
for comparison. This method is more limited because the ON and OFF times
must be the same and they depend on the clock pulse bits available in the SR
area.

In the following example the 1-second clock pulse is used (25502) so that 00206
would be turned ON and OFF every second, i.e., it would be ON for 0.5 seconds
and OFF for 0.5 seconds. Precise timing and the initial status of 00206 would
depend on the status of the clock pulse when 00000 goes ON.

Address | Instruction
00000 | LD

Operands
00000

i

00206

00001 | AND
00002 | OUT

25502
00206

175

Timer and Counter Instructions Section 5-14

5-14-2 HIGH-SPEED TIMER - TIMH(015)

Limitations

Description

Precautions

Flags

176

Definer Values

Ladder Symbol N: TC number

(000 through 511,
although 000 through 015

TIMH(015) N
sv

preferred)

Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, EM, HR, LR, #, SR

SV is between 00.00 and 99.99. (Although 00.00 and 00.01 may be set, 00.00
will disable the timer, i.e., turn ON the Completion Flag immediately, and 00.01 is
not reliably cycled.) The decimal point is not entered.

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

If the cycle time is greater than 10 ms, use TC 000 through TC 015. The PVs and
completion flags of timers 000 through 015 are refreshed every 10 ms, but the
PVs of timers 016 through TC 511 are refreshed each time that TIMH(015) is
executed in the program.

TIMH(015) operates in the same way as TIM except that TIMH measures in units
of 0.01 second.

The cycle time affects TIMH(015) accuracy if TC 016 through TC 511 are used. If
the cycle time is greater than 10 ms, use TC 000 through TC 015.

Refer to 5-14-1 TIMER — TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condition
for IL(002) is OFF. Power interruptions also reset timers. If a timer that is not re-
set under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-14-4 COUNTER — CNT for details.

When changing between the TIM and TIMH(015) instructions during online edit-
ing, reset the Completion Flag for the TIM instruction. The TIM instruction will not
execute properly unless the Completion Flag is reset. You must be in PRO-
GRAM mode to change between these instructions.

Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. There may be a time delay if TC 000 to TC 003 are used. If the SV is set
to #0001, because the timer accuracy is 0 to —0.1 s, the actual time will be a value
between 0 and 0.1 s, and the Completion Flag may turn ON as soon as the timer
input goes from OFF to ON. With other values also, allow for a timer accuracy of
0 to —0.1 s when setting the SV.

ER: SV is not in BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

Timer and Counter Instructions Section 5-14

5-14-3 TOTALIZING TIMER - TTIM(087)

Limitations

Description

Precautions

Flags

Definer Values

Ladder Symbol N: TC number
(000 through 511)
—1 TTIM(087)
N Operand Data Areas
SV SV: Set value (word, BCD)
IR, AR, DM, EM, HR, LR, SR, #
RB
RB: Reset bit

IR, SR, AR, HR, LR

SV is between 0000 and 9999 (000.0 and 999.9 s) and must be in BCD. The dec-
imal point is not entered.

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

TTIM(087) is an expansion instruction. A Programming Device can be used to
reassign function code 087 to another expansion instruction.

TTIM(087) is used to create a timer that increments the PV every 0.1 s to time
between 0.1 and 999.9 s. TTIM(087) increments in units of 0.1 second from
zero. TTIM(087) accuracy is +0.0/-0.1 second. A TTIM(087) timer will time as
long as its execute condition is ON until it reaches the SV or until RB turns ON to
reset the timer. TIMM(087) timers will time only as long as they are executed ev-
ery cycle, i.e., they do not time, but maintain the current PV, in interlocked pro-
gram sections or when they are jumped in the program.

The PVs and completion flags of timers 000 through 015 are refreshed every
10 ms, but the PVs of timers 016 through TC 511 are refreshed each time that
TTIM(087) is executed in the program.

The PVs of totalizing timers in interlocked program sections are maintained
when the execution condition for IL(002) is OFF. Unlike timers and high-speed
timers, totalizing timers in jumped program sections do not continue timing, but
maintain the PV.

Power interruptions will reset timers.

Totalizing timers will not restart after timing out unless the PV is changed to a
value below the SV or the reset input is turned ON.

A delay of one cycle is sometimes required for a Completion Flag to be turned
ON after the timer times out.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. There may be a time delay if TC 000 to TC 003 are used. If the SV is set
to #0001, because the timer accuracy is 0 to —0.1 s, the actual time will be a value
between 0 and 0.1 s, and the Completion Flag may turn ON as soon as the timer
input goes from OFF to ON. With other values also, allow for a timer accuracy of
0 to 0.1 s when setting the SV.

ER: SV is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary had been exceeded.

177

Timer and Counter Instructions Section 5-14

Example

00000

The following figure illustrates the relationship between the execution conditions
for a totalizing timer with a set value of 2 s, its PV, and the Completion Flag.

Address | Instruction Operands
TTIM(087)
00000 | LD 00000
TIM 000
pr 00001 | TTIM(087)
TIM 000
LR 2100 40020
LR 2100
Timer input
(I: IR 00000)
Reset bit |—| |_|
(RB: LR 2100) 1

Completion Flag
(TIM 000)

Present value: 0020

5-14-4 COUNTER — CNT

Limitations

Description

178

0000
Definer Values
Ladder Symbol N: TC number
(000 through 511)
cP CNTN
- sV Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, EM, HR, LR, #, SR

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

CNT is used to count down from SV when the execution condition on the count
pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be decre-
mented by one whenever CNT is executed with an ON execution condition for
CP and the execution condition was OFF for the last execution. If the execution
condition has not changed or has changed from ON to OFF, the PV of CNT will
not be changed. The Completion Flag for a counter is turned ON when the PV
reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is reset
to SV. The PV will not be decremented while R is ON. Counting down from SV will
begin again when R goes OFF. The PV for CNT will not be reset in interlocked
program sections or by power interruptions.

Timer and Counter Instructions Section 5-14

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition ON
on count pulse (CP) ¢

Execution condition
on reset (R)

(
)

Completion Flag ((

)

]

[: SV
PV 0002 .
0001
0000
Precautions Program execution will continue even if a non-BCD SV is used, but the SV will

not be correct.

Jumps

Never program CNT between JMP(004) 00 and JME(005) 00 with an SV of
#0000. The Completion Flag will turn ON even when the execution condition for
JMP(004) 00 is ON (i.e., even when the program section with CNT is jumped).
CNT can be programmed successfully between JMP(004) and JME(005) as
long as a jump number between 01 and 99 is used.

Step Instructions
Never program CNT between STEP(008) and SNXT(009) with an SV of #0000.
The Completion Flag will turn ON even when the step containing CNT is reset.

Flags ER: SV is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary had been exceeded.

Example 1: In the following example, the PV will be decremented whenever both 00000 and

Basic Application 00001 are ON provided that 00002 is OFF and either 00000 or 00001 was OFF
the last time CNT 004 was executed. When 150 pulses have been counted down
(i.e., when PV reaches zero), 00205 will be turned ON.

00000 00001

11 11 CP Address | Instruction Operands
] 11 CNT 004

00002 00000 LD 00000
{l A #0150 00001 | AND 00001
00002 | LD 00002
o 00003 | CNT 0004
1 00205 #0150
00004 | LD CNT 004
00005 | OUT 00205

Here, 00000 can be used to control when CNT is operative and 00001 can be
used as the bit whose OFF to ON changes are being counted.

179

Timer and Counter Instructions

Section 5-14

The previously-shown CNT can be modified to restart from SV each time power
is turned ON to the PC. This is done by using the First Cycle Flag in the SR area

(25315) to reset CNT as shown below.

0(,’?00 o<|xl>o1 CP Address | Instruction Operands
11 11 CNT 004
00002 00000 |LD 00000
I} 2 #0150 00001 | AND 00001
25315 00002 | LD 00002
{| 00003 | OR 25315
ONT 004 00004 | CNT 004
I} @ #0150
00005 | LD CNT 004
00006 | OUT 00205
Example 2: Counters that can count past 9,999 can be programmed by using one CNT to

Extended Counter

count the number of times another CNT has counted to zero from SV.

In the following example, 00000 is used to control when CNT 001 operates. CNT
001, when 00000 is ON, counts down the number of OFF to ON changes in
00001. CNT 001 is reset by its Completion Flag, i.e., it starts counting again as
soon as its PV reaches zero. CNT 002 counts the number of times the Comple-
tion Flag for CNT 001 goes ON. Bit 00002 serves as a reset for the entire ex-
tended counter, resetting both CNT 001 and CNT 002 when it is OFF. The Com-
pletion Flag for CNT 002 is also used to reset CNT 001 to inhibit CNT 001 opera-
tion, once SV for CNT 002 has been reached, until the entire extended counter is
reset via 00002.

Because in this example the SV for CNT 001 is 100 and the SV for CNT 002 is
200, the Completion Flag for CNT 002 turns ON when 100 x 200 or 20,000 OFF
to ON changes have been counted in 00001. This would result in 00203 being
turned ON.

_oi)ooo 00?01 CP Address | Instruction Operands
I I I
CNT 001 00000 | LD 00000
00(]’92 R #0100 00001 AND 00001
—H 00002 | LD NOT 00002
ONT 001 00003 | OR CNT 001
| — 00004 | OR CNT 002
00005 | CNT 001
CNT 002 #0100
— — 00006 | LD CNT 001
ONT 001 00007 | LD NOT 00002
— | cP 00008 | CNT 002
CNT 002 #0200
00?92 R #0200 00009 | LD CNT 002
—H 00010 | OUT 00203
CNT 002
_| : 00203
CNT can be used in sequence as many times as required to produce counters
capable of counting any desired values.
Example 3: CNT can be used to create extended timers in two ways: by combining TIM with

Extended Timers

180

CNT and by counting SR area clock pulse bits.

In the following example, CNT 002 counts the number of times TIM 001 reaches
zero from its SV. The Completion Flag for TIM 001 is used to reset TIM 001 so
that it runs continuously and CNT 002 counts the number of times the Comple-
tion Flag for TIM 001 goes ON (CNT 002 would be executed once each time be-

Timer and Counter Instructions

Section 5-14

00000 TIM 001 CNT 002

tween when the Completion Flag for TIM 001 goes ON and TIM 001 is reset by
its Completion Flag). TIM 001 is also reset by the Completion Flag for CNT 002
so that the extended timer would not start again until CNT 002 was reset by
00001, which serves as the reset for the entire extended timer.

Because in this example the SV for TIM 001 is 5.0 seconds and the SV for CNT

002 is 100, the Completion Flag for CNT 002 turns ON when 5 seconds x 100
times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired. This would

result in 00201 being turned ON.

r TIM 001 Address | Instruction Operands
#0050 | 505 00000 | LD 00000
TIM 001 o 00001 | AND NOT TIM 001
— | ot 00002 | AND NOT CNT 002
002 00003 | TIM 001
00001 #0050
— | #0100
R 00004 |LD TIM 001
CONT 002 00005 | LD 00001
— | @ 00006 [CNT 002
#0100
00007 | LD CNT 002
00008 | OUT 00201
In the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to con-
trol the times when CNT is operating.
Because in this example the SV for CNT 001 is 700, the Completion Flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 seconds
have expired. This would result in 00202 being turned ON.
_Oi)ii'%foz CP Address | Instruction Operands
' oo 00000 [LD 00000
00001 A 00001 | AND 25502
—H #0700 00002 | LD NOT 00001
ONT 001 00003 | CNT 001
— | @ #0700
00004 | LD CNT 001
00005 [ouT 00202

Note

The shorter clock pulses will not necessarily produce accurate timers because
their short ON times might not be read accurately during longer cycles. In partic-
ular, the 0.02-second and 0.1-second clock pulses should not be used to create
timers with CNT instructions.

5-14-5 REVERSIBLE COUNTER — CNTR(012)

Definer Values

Ladder Symbol N: TC number

(000 through 511)

CNTR(012)
N

o Operand Data Areas

sV

SV: Set value (word, BCD)

IR, AR, DM, EM, HR, LR, #, SR

181

Timer and Counter Instructions Section 5-14

Limitations

Description

Precautions

Flags

182

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

The CNTR(012) is a reversible, up/down circular counter, i.e., it is used to count
between zero and SV according to changes in two execution conditions, those in
the increment input (Il) and those in the decrement input (DI).

The present value (PV) will be incremented by one whenever CNTR(012) is exe-
cuted with an ON execution condition for Il and the last execution condition for Il
was OFF. The present value (PV) will be decremented by one whenever
CNTR(012) is executed with an ON execution condition for DI and the last ex-
ecution condition for DI was OFF. If OFF to ON changes have occurred in both Il
and DI since the last execution, the PV will not be changed.

If the execution conditions have not changed or have changed from ON to OFF
for both Il and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the Comple-
tion Flag is turned ON until the PV is decremented again. When incremented
past the SV, the PV is set to 0000 and the Completion Flag is turned ON until the
PV is incremented again.

CNTR(012) is reset with a reset input, R. When R goes from OFF to ON, the PV
is reset to zero. The PV will not be incremented or decremented while R is ON.
Counting will begin again when R goes OFF. The PV for CNTR(012) will not be
reset in interlocked program sections or by the effects of power interruptions.

Changes in Il and DI execution conditions, the Completion Flag, and the PV are
illustrated below starting from part way through CNTR(012) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition ON
on increment (Il)

Execution condition
on decrement (DI)

Completion Flag

PV

0000 0000

Program execution will continue even if a non-BCD SV is used, but the SV will
not be correct.

ER: SV is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary had been exceeded.

Data Shifting Section 5-15

5-15 Data Shifting

All of the instructions described in this section are used to shift data, but in differ-
ing amounts and directions. The first shift instruction, SFT(010), shifts an execu-
tion condition into a shift register; the rest of the instructions shift data that is al-
ready in memory.

5-15-1 SHIFT REGISTER - SFT(010)

Ladder Symbol Operand Data Areas

St: Starting word

SFT(010)
P . IR, SR, AR, HR, LR
t

R . E: End word

IR, SR, AR, HR, LR

Limitations St must be less than or equal to E, and St and E must be in the same data area.

If a bit address in one of the words used in a shift register is also used in an in-
struction that controls individual bit status (e.g., OUT, KEEP(011)), an error
(“COIL DUPL”) will be generated when program syntax is checked on the Pro-
gramming Console or another Programming Device. The program, however,
will be executed as written. See Example 2: Controlling Bits in Shift Registers for
a programming example that does this.

Description SFT(010) is controlled by three execution conditions, |, P, and R. If SFT(010) is
executed and 1) execution condition P is ON and was OFF the last execution,
and 2) R is OFF, then execution condition | is shifted into the rightmost bit of a
shift register defined between St and E, i.e., if | is ON, a 1 is shifted into the regis-
ter; if 1 is OFF, a O is shifted in. When | is shifted into the register, all bits previously
in the register are shifted to the left and the leftmost bit of the register is lost.

E St+1, St+2, ... St

/ LV WLV V. V. VIV VIV Y VIV VIV D W VIV V. VIV S VLV V VLV V.V UUUUUUUUUUUUUUUU\\

Lost _
data Execution
condition |

The execution condition on P functions like a differentiated instruction, i.e., | will
be shifted into the register only when P is ON and was OFF the last time
SFT(010) was executed. If execution condition P has not changed or has gone
from ON to OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the leftmost.
The shift register includes both of these words and all words between them. The
same word may be designated for St and E to create a 16-bit (i.e., 1-word) shift
register.

When execution condition R goes ON, all bits in the shift register will be turned
OFF (i.e., set to 0) and the shift register will not operate until R goes OFF again.

Flags There are no flags affected by SFT(010).

183

Data Shifting

Section 5-15

Example 1:
Basic Application

The following example uses the 1-second clock pulse bit (25502) so that the
execution condition produced by 00005 is shifted into a 3-word register between
IR 010 and IR 012 every second.

Example 2:
Controlling Bits in Shift
Registers

| Address | Instruction Operands
SFT(010) 00000 | LD 00005
F 010 00001 | LD 25502
A s 00002 | LD 00006
00003 | SFT(010)
010
012

The following program is used to control the status of the 17th bit of a shift regis-
ter running from AR 00 through AR 01. When the 17th bit is to be set, 00004 is
turned ON. This causes the jump for JMP(004) 00 not to be made for that one
cycle, and AR 0100 (the 17th bit) will be turned ON. When 12800 is OFF (i.e., at
all times except during the first cycle after 00004 has changed from OFF to ON),
the jump is executed and the status of AR 0100 will not be changed.

00200 00201 -
_| | | I Address | Instruction Operands
SFT(010) 00000 | LD 00200
00202 b 00001 | AND 00201
1
—! AR 00 00002 | LD 00202
00203 AR 01 00003 | LD 00203
—} R 00004 | SFT(010)
AR 00
00004 AR 01
— | @ 00005 | LD 00004
19800 00006 | DIFU(013) 12800
— } JMP(004) 00 00007 |LD 12800
00008 | JMP(004) 00
12800 00009 | LD 12800
ml AR 0100 00010 | OUT AR 0100
00011 [JME(005) 00
! JME(005) 00
When a bit that is part of a shift register is used in OUT (or any other instruction
that controls bit status), a syntax error will be generated during the program
check, but the program will executed properly (i.e., as written).
Example 3: The following program controls the conveyor line shown below so that faulty

Control Action

184

products detected at the sensor are pushed down a shoot. To do this, the execu-
tion condition determined by inputs from the first sensor (00001) are stored in a
shift register: ON for good products; OFF for faulty ones. Conveyor speed has
been adjusted so that HR 0003 of the shift register can be used to activate a
pusher (00500) when a faulty product reaches it, i.e., when HR 0003 turns ON,
00500 is turned ON to activate the pusher.

Data Shifting

Section 5-15

18The program is set up so that a rotary encoder (00000) controls execution of
SFT(010) through a DIFU(013), the rotary encoder is set up to turn ON and OFF
each time a product passes the first sensor. Another sensor (00002) is used to
detect faulty products in the shoot so that the pusher output and HR 0003 of the
shift register can be reset as required.

HR 0003
Nl

00002

Sensor
(00001)
Pusher
(00500)
—
I I
() Q/\>
Sensor
Rotary Encoder (00002)
(00000) Chute
| Address | Instruction Operands
SFT(010) 00000 | LD 00001
P 00001 | LD 00000
HR 00
00002 | LD 00003
B 1 HRot 00003 | SFT(010)
HR 00
HR 01
@ 00004 | LD HR 0003
00005 | OUT 00500
00006 | LD 00002
@ 00007 | OUT NOT 00500
00008 | OUT NOT HR 0003

HR 0003

5-15-2 REVERSIBLE SHIFT REGISTER - SFTR(084)

Limitations

Operand Data Areas

Ladder Symbols C: Control word
IR, AR, DM, EM, HR, LR, SR
SFTR(084) — @SFTR(084)
St: Starting word
C C
IR, SR, AR, DM, EM, HR, LR
St St E: End word
E E
IR, SR, AR, DM, EM, HR LR

St and E must be in the same data area and St must be less than or equal to E.

185

Data Shifting

Section 5-15

Description

Flags

Example

00005

SFTR(084) is used to create a single- or multiple-word shift register that can shift
data to either the right or the left. To create a single-word register, designate the
same word for St and E. The control word provides the shift direction, the status
to be put into the register, the shift pulse, and the reset input. The control word is
allocated as follows:

1511413 |12 Not used.

Shift direction
1 (ON): Left (LSB to MSB)
0 (OFF): Right (MSB to LSB)

Status to input into register

Shift pulse bit

Reset

The data in the shift register will be shifted one bit in the direction indicated by bit
12, shifting one bit out to CY and the status of bit 13 into the other end whenever
SFTR(084) is executed with an ON execution condition as long as the reset bit is
OFF and as long as bit 14 is ON. If SFTR(084) is executed with an OFF execu-
tion condition or if SFTR(084) is executed with bit 14 OFF, the shift register will
remain unchanged. If SFTR(084) is executed with an ON execution condition
and the reset bit (bit 15) is OFF, the entire shift register and CY will be set to zero.

ER: St and E are not in the same data area or ST is greater than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: Receives the status of bit 00 of St or bit 15 of E, depending on the shift
direction.

In the following example, IR 00005, IR 00006, IR 00007, and IR 00008 are used
to control the bits of C used in @ SHIFT(084). The shift register is between LR 20
and LR 21, and it is controlled through IR 00009.

00006

00007

00008

00009

Address | Instruction Operands
@ Direction 00000 | LD 00005
00001 ouT 05012
00002 LD 00006
05013 Status to input 00003 ouT 05013
00004 LD 00007
00005 ouT 05014
@ Shift pulse 00006 LD 00008
00007 ouT 05015
00008 LD 00009
00009 @SFT(010)
05015 Reset 050
LR 20
LR 21

186

@SFTR(084)
050

LR 20

LR 21

Data Shifting Section 5-15

5-15-3 ARITHMETIC SHIFT LEFT — ASL(025)

Ladder Symbols Operand Data Areas
— AsL(025) | —— @AsL(025) Wd: Shift word
IR, SR, AR, DM, EM, HR, LR
Wd Wd
Description When the execution condition is OFF, ASL(025) is not executed. When the exe-

cution condition is ON, ASL(025) shifts a 0 into bit 00 of Wd, shifts the bits of Wd
one bit to the left, and shifts the status of bit 15 into CY.

Bit Bit
CY 15 00
[] [Tofo* 1 t]oJoJo]1 o[t ofo]1]1] |
“— -

Flags ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: Receives the status of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.
N: ON when a 1 is shifted into bit 15 of Wd.

5-15-4 ARITHMETIC SHIFT RIGHT — ASR(026)

Ladder Symbols Operand Data Areas
——— ASR(026) —— @ASR(026) Wd: Shift word
IR, SR, AR, DM, EM, HR, LR
Wwd Wd
Description When the execution condition is OFF, ASR(025) is not executed. When the exe-

cution condition is ON, ASR(025) shifts a 0 into bit 15 of Wd, shifts the bits of Wd
one bit to the right, and shifts the status of bit 00 into CY.

Bit Bit
15 oo CY
o [Tifofofi o] 1 ofo1 1 o of1]o] []
~— ~—r
Flags ER: The content of a word containing an indirect DM/EM address is not BCD

or the DM/EM area boundary has been exceeded.
CY: Receives the data of bit 00.
EQ: ON when the content of Wd is zero; otherwise OFF.

187

Data Shifting Section 5-15

5-15-5 ROTATE LEFT — ROL(027)

Ladder Symbols Operand Data Areas
— Row27) —1 eroL27) Wd: Rotate word
IR, SR, AR, DM, EM, HR, LR
Wd Wd
Description When the execution condition is OFF, ROL(027) is not executed. When the exe-

cution condition is ON, ROL(027) shifts all Wd bits one bit to the left, shifting CY
into bit 00 of Wd and shifting bit 15 of Wd into CY.

Bit Bit
cYy 15 00
@ [1]o[1[1]ofo[1]1]1]ofofo[1]1]0]1]
N [)
Precautions Use STC(041) to set the status of CY or CLC(041) to clear the status of CY be-

fore doing a rotate operation to ensure that CY contains the proper status before
execution ROL(027).

The status of CY is cleared at the end of each cycle (when END(001) is
executed).

Flags ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: Receives the data of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.
N: ON when a 1 is shifted into bit 15 of Wd.

5-15-6 ROTATE RIGHT — ROR(028)

Ladder Symbols Operand Data Areas
— ROR(028) | —{ @ROR(028) Wd: Rotate word
IR, SR, AR, DM, EM, HR, LR
Wd Wd
Description When the execution condition is OFF, ROR(028) is not executed. When the exe-

cution condition is ON, ROR(028) shifts all Wd bits one bit to the right, shifting CY
into bit 15 of Wd and shifting bit 00 of Wd into CY.

Bit Bit
CY 15 00

@ loft]o[1]o[t]ofofo[t[1]1]ofofo[1]
N |

Precautions Use STC(041) to set the status of CY or CLC(041) to clear the status of CY be-
fore doing a rotate operation to ensure that CY contains the proper status before
execution ROR(028).

The status of CY is cleared at the end of each cycle (when END(001) is
executed).

188

Data Shifting

Section 5-15

Flags

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: ROR(028) receives the data of bit 00.
EQ: ON when the content of Wd is zero; otherwise OFF.
N: ON when a 1 is shifted into bit 15 of Wd.

5-15-7 ONE DIGIT SHIFT LEFT — SLD(074)

Limitations

Description

Precautions

Flags

Ladder Symbols Operand Data Areas
St: Starting word
SLD(074) | T @SLD(074) IR, SR, AR, DM, EM, HR, LR
St St
E: End word
E E
IR, SR, AR, DM, EM, HR, LR

St and E must be in the same data area, and St must be less than or equal to E.

When the execution condition is OFF, SLD(074) is not executed. When the exe-
cution condition is ON, SLD(074) shifts data between St and E (inclusive) by one
digit (four bits) to the left. 0 is written into the rightmost digit of the St, and the
content of the leftmost digit of E is lost.

E st
8|F|[c|s D[7]9]1

' I

Lost data 0

If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed.

ER: The St and E words are in different areas, or St is greater than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-15-8 ONE DIGIT SHIFT RIGHT — SRD(075)

Limitations

Description

Ladder Symbols Operand Data Areas
E: End word
SRD(075) | ———| @SRD(075) IR, SR, AR, DM, EM, HR, LR
E E -
St: Starting word
St St

IR, SR, AR, DM, EM, HR, LR

St and E must be in the same data area, and St must be less than or equal to E.

When the execution condition is OFF, SRD(075) is not executed. When the exe-
cution condition is ON, SRD(075) shifts data between St and E (inclusive) by one

189

Data Shifting

Section 5-15

Precautions

Flags

digit (four bits) to the right. 0 is written into the leftmost digit of St and the right-
most digit of E is lost.

St L IE
3[4]5]2 Fls[c|1
0 Lost data

If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed. Set the range between E and St to a
maximum of 50 words.

ER: The St and E words are in different areas, or St is less than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-15-9 WORD SHIFT — WSFT(016)

Limitations

Description

Flags

190

Ladder Symbols Operand Data Areas
St: Starting word
WSFT(016) — @WSFT(016) IR SR. AR. DM. EM. HR. LR
St St
E: End word
E E
IR, SR, AR, DM, EM, HR, LR

St and E must be in the same data area, and St must be less than or equal to E.

When the execution condition is OFF, WSFT(016) is not executed. When the
execution condition is ON, WSFT(016) shifts data between St and E in word
units. Zeros are written into St and the content of E is lost.

E St+1 St

l [0000

E St+1 St

ER: The St and E words are in different areas, or St is greater than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

Data Shifting

Section 5-15

5-15-10 ASYNCHRONOUS SHIFT REGISTER — ASFT(017)

Limitations

Description

Control Word

Flags

Example

Operand Data Areas

Ladder Symbols C: Control word
IR, SR, AR, DM, EM, HR, LR, #
ASFT(017) — ASFT(017) St. Starting word
C C IR, SR, AR, DM, EM, HR, LR
St St E: End word
E E IR, SR, AR, DM, EM, HR, LR

St and E must be in the same data area, and St must be less than or equal to E.

ASFT(017) is an expansion instruction. A Programming Device can be used to
reassign function code 017 to another expansion instruction.

When the execution condition is OFF, ASFT(017) does nothing and the program
moves to the next instruction. When the execution condition is ON, ASFT(017) is
used to create and control a reversible asynchronous word shift register be-
tween St and E. This register only shifts words when the next word in the register
is zero, e.g., if no words in the register contain zero, nothing is shifted. Also, only
one word is shifted for each word in the register that contains zero. When the
contents of a word are shifted to the next word, the original word’s contents are
set to zero. In essence, when the register is shifted, each zero word in the regis-
ter trades places with the next word. (See Example below.)

The shift direction (i.e. whether the “next word” is the next higher or the next low-
er word) is designated in C. C is also used to reset the register. All of any portion
of the register can be reset by designating the desired portion with St and E.

Bits 00 through 12 of C are not used. Bit 13 is the shift direction: turn bit 13 ON to
shift down (toward lower addressed words) and OFF to shift up (toward higher
addressed words). Bit 14 is the Shift Enable Bit: turn bit 14 ON to enable shift
register operation according to bit 13 and OFF to disable the register. Bit 15 is the
Reset bit: the register will be reset (set to zero) between St and E when
ASFT(017) is executed with bit 15 ON. Turn bit 15 OFF for normal operation.

Control word value Function
#4000 Shifts upward (towards higher addressed words).
#6000 Shifts downward (towards lower addressed words).
#8000 Clears the contents of St through E to #0000.

ER: The St and E words are in different areas, or St is greater than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The following example shows instruction ASFT(017) used to shift words in an
11-word shift register created between DM 0100 and DM 0110 with a control

191

Data Movement Section 5-16

word value of #6000 (bits 13 and 14 ON). The data changes that would occur for
the given register and control word contents are also shown.

00000 -
: ASFT(017) Address | Instruction Operands
#6000 00100 LD 00000
VPP 00101 | ASFT(017)
DM 0110 #6000
DM 0100
DM 0110
Before After 1 After 7
execution execution executions
DM 0100 1234 1234 1234
DM 0101 0000 0000 2345

DM 0102 0000
DM 0103 2345
DM 0104 3456
DM 0105 0000
DM 0106 4567
DM 0107 5678
DM 0108 6789
DM 0109 0000
DM 0110 789A

2345 3456
0000 4567
3456 5678
4567 6789
0000 789A
5678 0000
6789 0000
789A 0000
0000 0000

A)

5-16 Data Movement

This section describes the instructions used for moving data between different
addresses in data areas. These movements can be programmed to be within
the same data area or between different data areas. Data movement is essential
for utilizing all of the data areas of the PC. Effective communications in Link Sys-
tems also requires data movement. All of these instructions change only the
content of the words to which data is being moved, i.e., the content of source
words is the same before and after execution of any of the data movement in-

structions.
5-16-1 MOVE — MOV(021)
Ladder Symbols Operand Data Areas
S: Source word
—1 MOV(021) —1 @MOoV(021)
IR, SR, AR, DM, EM, HR, TC, LR, #
S S
D: Destination word
D D
IR, SR, AR, DM, EM, HR, LR
Description When the execution condition is OFF, MOV(021) is not executed. When the exe-

cution condition is ON, MOV(021) copies the content of S to D.

Source word Destination word
— e e
| —_———
L Bit status
_____________ not changed.

Precautions TC numbers cannot be designated as D to change the PV of the timer or counter.
You can, however, easily change the PV of a timer or a counter by using
BSET(071).

192

Data Movement Section 5-16

Flags ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when all zeros are transferred to D.
N: ON when bit 15 of D is set to 1.

5-16-2 MOVE NOT - MVN(022)

Ladder Symbols Operand Data Areas
S: Source word
— MVN(022) — @MVN(022)
IR, SR, AR, DM, EM, HR, TC, LR, #
S S
D: Destination word
D D
IR, SR, AR, DM, EM, HR, LR
Description When the execution condition is OFF, MVN(022) is not executed. When the exe-

cution condition is ON, MVN(022) transfers the inverted content of S (specified
word or four-digit hexadecimal constant) to D, i.e., for each ON bit in S, the corre-
sponding bit in D is turned OFF, and for each OFF bit in S, the corresponding bit
in D is turned ON.

Source word Destination word
T
| —_——
Bit status
be——— - - inverted.
Precautions TC numbers cannot be designated as D to change the PV of the timer or counter.

However, these can be easily changed using BSET(071).
Flags ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when all zeros are transferred to D.
N: ON when bit 15 of D is set to 1.

5-16-3 BLOCK SET — BSET(071)

Operand Data Areas

Ladder Symbols S: Source data
IR, SR, AR, DM, EM, HR, TC, LR, #
— BSET(071) — @BSET(071)
St: Starting word
S S
IR, SR, AR, DM, EM, HR, TC, LR
St St E: End Word
E E IR, SR, AR, DM, EM, HR, TC, LR
Limitations St must be less than or equal to E, and St and E must be in the same data area.

193

Data Movement

Section 5-16

Description

Flags

Example

When the execution condition is OFF, BSET(071) is not executed. When the

execution condition is ON, BSET(071) copies the content of S to all words from
St through E.

3[4]5]2 3l4]5]2

3l4]5]2

BSET(071) can be used to change timer/counter PV. (This cannot be done with
MOV(021) or MVN(022).) BSET(071) can also be used to clear sections of a
data area, i.e., the DM area, to prepare for executing other instructions.

ER: St and E are not in the same data area or St is greater than E.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The following example shows how to use BSET(071) to change the PV of a timer
depending on the status of IR 00003 and IR 00004. When IR 00003 is ON, TIM
010 will operate as a 50-second timer; when IR 00004 is ON, TIM 010 will oper-
ate as a 30-second timer.

194

ooo|os o?ci94 Address | Instruction Operands
— OBSETO7) 00000 | LD 00003
TT;S(()):)O 00001 | AND NOT 00004
00002 | @BSET(071)
TIM 010 #0500
00004 00003 TIM 010
—rs @BSET(071) TIM 010
#0300 00003 | LD 00004
TIM 010 00004 | AND NOT 00003
TIM 010 00005 | @BSET(071)
#0300
000|03 TIM 010
I TIM 010 TIM 010
00004 #9999 00006 | LD 00003
— 00007 | OR 00004
00008 | TIM 010
#9999

Data Movement Section 5-16

5-16-4 BLOCK TRANSFER - XFER(070)

Operand Data Areas

Ladder Symbols N: Number of words (BCD)
IR, SR, AR, DM, EM, HR, TC, LR, #
—1 XFER(070) —1 @XFER(070)
S: Starting source word
N N
IR, SR, AR, DM, EM, HR, TC, LR
S S D: Starting destination word
D D IR, SR, AR, DM, EM, HR, TC, LR
Limitations Both S and D may be in the same data area, but their respective block areas

must not overlap. S and S+N must be in the same data area, as must D and D+N.
N must be BCD between 0000 and 6144.

Description When the execution condition is OFF, XFER(070) is not executed. When the
execution condition is ON, XFER(070) copies the contents of S, S+1, ..., S+N to
D, D+1, ..., D+N.
S D

34|5]2] ———— [3]4]5]2

S+1 D+1
34|51 ———— [3]4]5]1

S+2 D+2
3l4]2]2] ——— [3]4]2]2

S+N D+N
64[5]2] ———— = [6]4]5]2

Flags ER: N is not BCD between 0000 and 2000.
S and S+N or D and D+N are not in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-16-5 DATA EXCHANGE — XCHG(073)

Ladder Symbols Operand Data Areas
E1: Exchange word 1
— XCHG(073) ——@XCHG(073)
IR, SR, AR, DM, EM, HR, TC, LR
E1 E1
E2: Exchange word 2
E2 E2
IR, SR, AR, DM, EM, HR, TC, LR
Description When the execution condition is OFF, XCHG(073) is not executed. When the
execution condition is ON, XCHG(073) exchanges the content of E1 and E2.
E1 E2
[[[———= [l []

195

Data Movement

Section 5-16

Flags

If you want to exchange content of blocks whose size is greater than 1 word, use
work words as an intermediate buffer to hold one of the blocks using XFER(070)
three times.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-16-6 SINGLE WORD DISTRIBUTE - DIST(080)

Operand Data Areas

Ladder Symbols S: Source data
IR, SR, AR, DM, EM, HR, TC, LR, #
— DIST(080) — @DIST(080)
DBs: Destination base word
S
IR, SR, AR, DM, EM, HR, TC, LR
DBs DBs C: Control word (BCD)
C

IR, SR, AR, DM, EM, HR, TC, LR, #

Limitations

Description

Precautions

Data Distribution Operation
(C=0000 to 6655)

Stack Operation
(C=9000 to 9999)

Example of Stack Operation

196

C must be a BCD. If C<6655, DBs must be in the same data area as DBs+C. If
C>9000, DBs must be in the same data area as DBs+C-9000.

Depending on the value of C, DIST(080) will operate as a data distribution
instruction or stack instruction. If C is between 0000 and 6655, DIST(080) will
operate as a data distribution instruction and copy the content of S to DBs+C. If
the leftmost digit of C is 9, DIST(080) will operate as a stack instruction and
create a stack with the number of words specified in the rightmost 3 digits of C.

Stack operation will be unreliable if the specified stack length is different from the
length specified in the last execution of DIST(080) or COLL(081).

When the execution condition is OFF, DIST(080) is not executed. When the exe-
cution condition is ON, DIST(080) copies the content of S to DBs+C, i.e.,C is
added to DBs to determine the destination word.

S DBs + C

3l45]2] — o [3]4]5]2

When the execution condition is OFF, DIST(080) is not executed. When the exe-
cution condition is ON, DIST(080) operates a stack from DBs to DBs+C—-9000.
DBs is the stack pointer, so S is copied to the word indicated by DBs and DBs is
incremented by 1. The Negative Flag also changes.

Digits of C: 3210

I,—> Specifies the stack length (000 to 999).

—— A value of 9 indicates stack operation.

Data can be added to the stack until it is full. DIST(080) is normally used together
with COLL(081), which can be set to read from the stack on a FIFO or LIFO ba-
sis. Refer to 5-16-7 DATA COLLECT — COLL(081) for details.

In the following example, the content of C (LR 10) is 9010, and DIST(080) is used
to write the numerical data #00FF to the 10-word stack from HR 20 to HR 29.
During the first cycle when IR 00001 is ON, the data is written to DBs+1 (HR 21)

Data Movement

Section 5-16

00001
I

and the stack pointer is incremented by 1. In the second cycle the data is written

to DBs+2 (HR 22) and the stack pointer is incremented, and so on.

[DIST(080) Address | Instruction Operands
00FF 00000 | LD 00001
HR 20 00001 DIST(080)
LR 10 #00FF
HR 20
LR 10
After one After two
execution executions
HR 20 HR 20
Stack pointer —— [0[0[0][1 > ojojo]2
HR 2 Stack pointer HR 21
0|0|F|F incremented 0|0|F|F
HR 22 HR 22
[[ojo[F[F
Stack area —))
HR 29 HR 29
ER: The content of C is not BCD or 6655<C<9000.

Flags

When C<6655, DBs and DBs+C are not in the same data area.
When C>9000, DBs and DBs+C—9000 are not in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the content of S is zero; otherwise OFF.

5-16-7 DATA COLLECT - COLL(081)

Operand Data Areas

Ladder Symbols SBs: Source base word
IR, SR, AR, DM, EM, HR, TC, LR
COLL(081) — @COLL(081)
C: Offset data (BCD)
SBs SBs
IR, SR, AR, DM, EM, HR, TC, LR, #

c C D: Destination word

D D IR, SR, AR, DM, EM, HR, TC, LR

Limitations

Description

C must be a BCD. If C<6655, SBs must be in the same data area as SBs+C. If the
leftmost digit of C is 8 or 9, DBs must be in the same data area as SBs+N (N=the
3 rightmost digits of C).

Depending on the value of C, COLL(081) will operate as a data collection
instruction, FIFO stack instruction, or LIFO stack instruction. If C is between
0000 and 6655, COLL(081) will operate as a data collection instruction and copy
the content of SBs+C to D.

If the leftmost digit of C is 9 , COLL(081) will operate as a FIFO stack instruction.
If the leftmost digit of C is 8, COLL(081) will operate as a LIFO stack instruction.

197

Data Movement

Section 5-16

Precautions

Data Collection Operation
(C=0000 to 6655)

FIFO Stack Operation
(C=9000 to 9999)

Both stack operations use a stack beginning at SBs with a length specified in the
rightmost 3 digits of C.

Stack operation will be unreliable if the specified stack length is different from the
length specified in the last execution of DIST(080) or COLL(081).

When the execution condition is OFF, COLL(081) is not executed. When the
execution condition is ON, COLL(081) copies the contentof SBs + Cto D, i.e., C
is added to SBs to determine the source word.

SBs+C D

3l4|5]2] — o [3]4]5]2

When the execution condition is OFF, COLL(081) is not executed. When the
execution condition is ON, COLL(081) copies the data from the oldest word re-
corded in the stack to D. The stack pointer, SBs, is then decremented by 1.

Digits of C: 3210

_‘_I_> Specifies the stack length (000 to 999).

— A value of 9 indicates FIFO stack operation.

COLL(081) can be used together with DIST(080). Refer to 5-16-6 SINGLE
WORD DISTRIBUTE — DIST(080) for details.

Note FIFO stands for First-In-First-Out.
Example In the following example, the content of C (HR 00) is 9010, and COLL(081) is
used to copy the oldest entries from a10-word stack (IR 001 to IR 010) to LR 20.
a0 Add Instructi o d
: COLL (081) ress nstruction perands
001 00000 | LD 00001
HR 00 00001 | COLL(081)
LR 20 001
HR 00
LR 20
Before After one After two
execution . execution . executions
Stack pointer Stack pointer
IR 001 decremented IR 001 decremented IR 001
Stack pointer — [0]0[0]2 => olofo]1 => olofofo
" [1R002 IR 002 IR 002
1]2]3]4 AlB[c[D | [
IR 003 IR 003 IR 003
AlB[c[D | [| | [
Stack area — . . !
IR 010 IR 010 IR 010
v v
Output Qutput
LR 20 LR 20
1]2]3]4 AlB[c|D

198

Data Movement

Section 5-16

LIFO Stack Operation
(C=8000 to 8999)

When the execution condition is OFF, COLL(081) is not executed. When the
execution condition is ON, COLL(081) copies the data most recently recorded in
the stack to D. The stack pointer, SBs, is then decremented by 1.

Digits of C: 3210

‘,—> Specifies the stack length (000 to 999).

— A value of 8 indicates LIFO stack operation.

Data can be added to the stack until it is full. DIST(080)’s stack operation can be
used together with COLL(081)’s read stack operation. COLL(081) can be set to

read on a FIFO or LIFO basis. Refer to 5-16-6 SINGLE WORD DISTRIBUTE
(080) for details.

Note LIFO stands for Last-In-First-Out.
Example In the following example, the content of C (HR 00) is 8010, and COLL(081) is
used to copy the most recent entries from a 10-word stack (IR 001 to IR 010) to
LR 20.
00001 -
: CoLL(81) Address | Instruction Operands
001 00000 | LD 00001
R 00 00001 | COLL(081)
LR 20 001
HR 00
LR 20
Before After one After two
execution . execution . executions
Stack pointer Stack pointer
IR 001 decremented IR 001 decremented IR 001
Stack pointer —= [0 [0[0]2 => olofo]1 => oJofofo
B IR 002 IR 002 IR 002
1]2]3]4 1]2]3[4 | [
IR 003 IR 003 IR 003
AlB[c[D] | [
Stack area —)))
IR 010 IR 010 IR 010
v |
Output Output
LR 20 LR 20
AlB[c[D 1]2]3[4
Flags ER: The content of C is not BCD or 6655<C<8000.

When C<6655, DBs and DBs+C are not in the same data area.

When C=8000, the beginning and end of the stack are not in the same

data area or the value of the stack pointer exceeds the length of the
stack.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the transferred data is zero; otherwise OFF.

199

Data Movement

Section 5-16

5-16-8 MOVE BIT — MOVB(082)

Limitations

Description

Flags

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, EM, HR, LR, #
MOVB(082) —1 @MOVB(082)
Bi: Bit designator (BCD)
S S
IR, SR, AR, DM, EM, HR, TC, LR, #

Bi Bi D: Destination word

D D IR, SR, AR, DM, EM, HR, LR

The rightmost two digits and the leftmost two digits of Bi must each be between
00 and 15.

When the execution condition is OFF, MOVB(082) is not executed. When the
execution condition is ON, MOVB(082) copies the specified bit of S to the speci-
fied bit in D. The bits in S and D are specified by Bi. The rightmost two digits of Bi
designate the source bit; the leftmost two bits designate the destination bit.

Bit Bit
15 00
- Bi [o]ofo[1][o]o[1]o]oo]o]o]o]o]0]1]
2ol e 5 T
§ [of1]o[t1]o[t]ofofof1]1]t]o]o]o]1]
Source bit (00 to 15) |
Bit Bit
Destination bit (00 to 15) 15 00

D [of1]o]ofo[1]ofofofr]1[t]o]ofo]1]

ER: C is not BCD, or it is specifying a non-existent bit (i.e., bit specification
must be between 00 and 15).

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

N: ON if the leftmost bit of the content of word D is 1, otherwise OFF.

5-16-9 MOVE DIGIT — MOVD(083)

Limitations

Description

200

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, EM, HR, TC, LR, #
MQOVD(083) —1 @MOVD(083)
Di: Digit designator (BCD)

S S

IR, SR, AR, DM, EM, HR, TC, LR, #
Di Di D: Destination word
D D IR, SR, AR, DM, EM, HR, TC, LR

The rightmost three digits of Di must each be between 0 and 3.

When the execution condition is OFF, MOVD(083) is not executed. When the
execution condition is ON, MOVD(083) copies the content of the specified

Data Movement

Section 5-16

Digit Designator

Flags

Limitations

digit(s) in S to the specified digit(s) in D. Up to four digits can be transferred at
one time. The first digit to be copied, the number of digits to be copied, and the
first digit to receive the copy are designated in Di as shown below. Digits from S
will be copied to consecutive digits in D starting from the designated first digit
and continued for the designated number of digits. If the last digit is reached in
either S or D, further digits are used starting back at digit 0.

Digit number: 3210

—— Not used.

L First digitin S (0 to 3)

— Number of digits (0 to 3)

0: 1 digit

1: 2 digits
2: 3 digits
3: 4 digits

—— First digit in D (0 to 3)

The following show examples of the data movements for various values of Di.

ER:

Di: 0010
S D
0 0
1 1
2 2
3 3
Di: 0031
S D
0 0
1 1
2 2
3 3

Di: 0030
S

w)

wln |= |o
wN |= |Oo

Di: 0023

wld|=lo|lwm
w|lv|=lo o

At least one of the rightmost three digits of Di is not between 0 and 3.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-16-10 TRANSFER BITS — XFRB(062)

Operand Data Areas

C: Control word

IR, SR, AR, DM, EM, TC, HR, LR, #

S: First source word

IR, SR, AR, DM, EM, HR, TC, LR

Ladder Symbols
XFRB(062) — @XFRB(062)
C C
S S
D D

D: First destination word

IR, SR, AR, DM, EM, HR, LR

The specified source bits must be in the same data area.
The specified destination bits must be in the same data area.

XFRB(062) is an expansion instruction. A Programming Device can be used to
reassign function code 062 to another expansion instruction.

201

Data Movement Section 5-16

Description When the execution condition is OFF, XFRB(062) is not executed. When the
execution condition is ON, XFRB(062) copies the specified source bits to the
specified destination bits. The two rightmost digits of C specify the starting bits in
S and D and the leftmost two digits indicate the number of bits that will be copied.

C
|

MsB | | | | LsB

|—> First bit of S (0 to F)

L——— First bitof D (O to F)
Number of bits (01 to FF)

Note Up to 255 (FF) bits can be copied at one time.

Example In the following example, XFRB(062) is used to transfer 5 bits from IR 020 to
LR 21 when IR 00001 is ON. The starting bit in IR 020 is 0, and the starting bit in
LR 21 is 4, so IR 02000 to IR 02004 are copied to LR 2104 to LR 2108.

00001
} XFRB(062) Address | Instruction Operands

#0540 00000 | LD 00001

IR 020 00001 [XFRB(062)
LR 21 #0540
020
LR 21

Bit Bit

S(IR020) [o[1]o|1]o[1]o]o]ofofol1 0711 1]

Bit Bit
15 00
D(LR21) |o|1]o]oo[1[o[1]0 1[1]1]o]o]0[1]

Flags ER: The specified source bits are not all in the same data area.
The specified destination bits are not all in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-16-11 EM BLOCK TRANSFER - XFR2(—)

Operand Data Areas

Ladder Symbols N: Number of words (BCD)
IR, SR, AR, DM, EM, HR, TC, LR, #
— XFR2(—) — @XFR2(—)
S: Starting source word
N N
IR, SR, AR, DM, EM, HR, TC, LR, #
S S D: Starting destination word
D D IR, SR, AR, DM, EM, HR, TC, LR, #
Limitations S and S+N must be in the same data area, as must D and D+N.

N must be BCD.

XFR2(—) is an expansion instruction. A Programming Device must be used to
assign a function code to XFR2(—) in order to use this instruction.

202

Data Movement

Section 5-16

Description

Flags

Example

When the execution condition is OFF, XFR2(—) is not executed. When the exe-
cution condition is ON, XFR2(—) copies the contents of S, S+1, ..., S+N to D,
D+1, ..., D+N. If a constant is used for S or D, the constant specifies an address in
the current EM bank.

ER: N is not BCD.
S and S+N or D and D+N are not in the same data area.
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The following example copies the contents of the 300 words from DM 0000
through DM 0299 to EM 2000 through EM 2299 in the current EM bank.

00000 Address | Instruction Operands
XFR2(—) 00200 | LD 00000
#0300 00201 | XFR2(—)
DM 0000 #0300
#2000 DM 0000
#2000

5-16-12 BLOCK TRANSFER TO OTHER EM BANK - BXF2(—)

Limitations

Description

Control Words

Operand Data Areas

Ladder Symbols C: First control word
IR, SR, AR, DM, EM, HR, TC, LR
BXF2(—) — @BXF2(—)
S: Starting source word

C C

IR, SR, AR, DM, EM, HR, TC, LR, #
S S D: Starting destination word
D D IR, SR, AR, DM, EM, HR, TC, LR, #

The value in C+1 must be BCD from 1 to 6144.
S and S+N must be in the same data area, as must D and D+N.

BXF2(—) is an expansion instruction. A Programming Device must be used to
assign a function code to BXF2(—) in order to use this instruction.

When the execution condition is OFF, BXF2(—) is not executed. When the exe-
cution condition is ON, BXF2(—) copies the contents of S, S+1, ..., S+N to D,
D+1, ..., D+N. The bank can be specified (in C) if an EM area address is used for
S or D. If a constant is used for S or D, the constant specifies an address in the
source or destination EM bank specified in C.

C contains the source and destination bank numbers if data is being transferred
to or from EM. The bank numbers are ignored unless an EM area address or a
constant is used for S or D.

C+1 contains the number of words to transfer and must be BCD (1 to 6144).

Control word Bits Function
Cc Oto7 Specifies the source bank number (00 to OF).

8to 15 Specifies the destination bank number (00 to OF).
C+1 0to 15 Specifies the number of words to transfer (1 to 6144).

203

Data Movement Section 5-16

Flags ER: N is not BCD.
S and S+N or D and D+N are not in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The bank indicated by C does not exists when an EM area address is
being used.

Example The following example copies the contents of the 300 words from DM 0000
through DM 0299 to EM 2000 through EM 2299 in the EM bank 01. (The source
bank number is ignored because an EM area address has not been used for it.)

00000 Address | Instruction Operands
F—— Bxre) 00200 | LD 00000
DM 1000 00201 BXF2(—)

DM 0000 DM 1000

#2000 DM 0000

#2000
C: DM 1000 C+1: DM 1001
0‘10‘0 0‘3‘0‘0

Source bank number (00) Number of words (300)

Destination bank number (01)

5-16-13 EM BANK TRANSFER — BXFR(125)

Operand Data Areas

Ladder Symbols C: First control word
IR, SR, AR, DM, EM, HR, TC, LR
— BXFR(125) — @BXFR(125)
S: Starting source word
C C
IR, SR, AR, DM, EM, HR, TC, LR
S S D: Starting destination word
D D IR, SR, AR, DM, EM, HR, TC, LR
Limitations The value in C+1 must be BCD from 1 to 6144.
S and S+N must be in the same data area, as must D and D+N.
Description When the execution condition is OFF, BXFR(125) is not executed. When the

execution condition is ON, BXFR(125) copies the contents of S, S+1, ..., S+N to
D, D+1, ..., D+N. The bank can be specified (in C) if an EM area address is used
for S or D.

Control Words C contains the source and destination bank numbers if data is being transferred
to or from EM. The bank numbers are ignored unless an EM area address or a
constant is used for S or D.

C+1 contains the number of words to transfer and must be BCD (1 to 6144).

Control word Bits Function
Cc Oto7 Specifies the source bank number (00 to OF).

8to 15 Specifies the destination bank number (00 to OF).
C+1 0to 15 Specifies the number of words to transfer (1 to 6144).

204

Data Comparison Section 5-17

Flags ER: N is not BCD.
S and S+N or D and D+N are not in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The bank indicated by C does not exists when an EM area address is
being used.

Example The following example copies the contents of the 300 words from DM 0000
through DM 0299 to EM 2000 through EM 2299 in the EM bank 01. (The source
bank number is ignored because an EM area address has not been used for it.)

00000 Address | Instruction Operands
F——— BxrR(2y) 00200 | LD 00000
DM 1000 00201 BXFR(125)

DM 0000 DM 1000

EM2000 DM 0000

EM 2000
C: DM 1000 C+1: DM 1001
0‘1‘0‘0 0‘3‘0‘0

Source bank number (00) Number of words (300)

Destination bank number (01)

5-17 Data Comparison
5-17-1 MULTI-WORD COMPARE — MCMP(019)

Operand Data Areas

Ladder Symbols TB1: First word of table 1
IR, SR, AR, DM, EM, HR, TC, LR
— MCMP(019) | ——{@MCMP(019)
TB2: First word of table 2
TBA1 TB1
IR, SR, AR, DM, EM, HR, TC, LR
B2 82 R: Result word
R R IR, AR, DM, EM, HR, TC, LR, SR
Limitations TB1 and TB1+15 must be in the same data area, as must TB2 and TB2+15.

MCMP(019) is an expansion instruction. A Programming Device can be used to
reassign function code 019 to another expansion instruction.

Description When the execution condition is OFF, MCMP(019) is not executed. When the
execution condition is ON, MCMP(019) compares the content of TB1 to TB2,
TB1+1 to TB2+1, TB1+2 to TB2+2, ..., and TB1+15 to TB2+15. If the first pair is
equal, the first bit in R is turned OFF, etc., i.e., if the content of TB1 equals the
content of TB2, bit 00 is turned OFF, if the content of TB1+1 equals the content of
TB2+1, bit 01 is turned OFF, etc. The rest of the bits in R will be turned ON.

Flags ER: One of the tables (i.e., TB1 through TB1+15, or TB2 through TB2+15)
exceeds the data area.

205

Data Comparison

Section 5-17

Example

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

The following example shows the comparisons made and the results provided
for MCMP(019). Here, the comparison is made during each cycle when 00000 is
ON.

00000
: MCMP(019) Address | Instruction Operands
100 00000 | LD 00000
DM 0200 00001 | MCMP(019)

DM 0300 100

DM 0200

DM 0300
TB1: IR 100 TB2: DM 0200 | [R:DM 0300
IR 100 0100 DM 0200 0100 DM 030000 0
IR 101 0200 DM 0201 0200 DM 030001 0
IR 102 0210 > DM 0202 0210 |—* DM 030002 0
IR 103 ABCD DM 0203 0400 DM 030003 1
IR 104 ABCD DM 0204 0500 DM 030004 1
IR 105 ABCD DM 0205 0600 DM 030005 1
IR 106 ABCD = DM 0206 0210 |[—= DM 030006 1
IR 107 0800 DM 0207 0800 DM 030007 0
IR 108 0900 DM 0208 0900 DM 030008 0
IR 109 1000 DM 0209 1000 DM 030009 0
IR 110 ABCD > DM 0210 0210 |—* DM 030010 1
IR 111 ABCD DM 0211 1200 DM 030011 1
IR 112 ABCD DM 0212 1300 DM 030012 1
IR 113 1400 DM 0213 1400 DM 030013 0
IR 114 0210 > DM 0214 0210 [— DM030014| ©
IR 115 1212 DM 0215 1600 DM 030015 1

5-17-2 COMPARE - CMP(020)
Ladder Symbols Operand Data Areas
Cp1: First compare word
— CMP(020)
IR, SR, AR, DM, EM, HR, TC, LR, #
ce Cp2: Second compare word
Cp2

Limitations

Description

Precautions

206

IR, SR, AR, DM, EM, HR, TC, LR, #

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(020) is not executed. When the exe-
cution condition is ON, CMP(020) compares Cp1 and Cp2 and outputs the result
to the GR, EQ, and LE flags in the SR area.

Placing other instructions between CMP(020) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

CMP(020) cannot be used to compare signed binary data. Use CPS(114)
instead. Refer to 5-17-8 SIGNED BINARY COMPARE — CPS(114) for details.

Data Comparison

Section 5-17

Flags

Example 1:

Saving CMP(020) Results

Example 2:

Obtaining Indications

ooooo
|

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.
GR: ON if Cp1 is greater than Cp2.

Flag Address C1<C2 C1=C2 C1>C2

GR 25505 OFF OFF ON

EQ 25506 OFF ON OFF

LE 25507 ON OFF OFF

The following example shows how to save the comparison result immediately. If
the content of HR 09 is greater than that of 010, 00200 is turned ON; if the two
contents are equal, 00201 is turned ON; if content of HR 09 is less than that of
010, 00202 is turned ON. In some applications, only one of the three OUTs would
be necessary, making the use of TR 0 unnecessary. With this type of program-
ming, 00200, 00201, and 00202 are changed only when CMP(020) is executed.

CMP(020)

HR 09

010
25505
_l I 00200) Greater Than
25506
_l : 00201 Equal
25507
_| : 00202) [ess Than
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00005 ouT 00200
00001 ouT TRO 00006 LD TRO
00002 CMP(020) 00007 AND 25506
010 00008 ouT 00201
HR 09 00009 LD TRO
00003 LD TRO 00010 AND 25507
00004 AND 25505 00011 ouT 00202

during Timer Operation

The following example uses TIM, CMP(020), and the LE flag (25507) to produce
outputs at particular times in the timer’s countdown. The timer is started by turn-
ing ON 00000. When 00000 is OFF, TIM 010 is reset and the second two
CMP(020)s are not executed (i.e., executed with OFF execution conditions).
Output 00200 is produced after 100 seconds; output 00201, after 200 seconds;
output 00202, after 300 seconds; and output 00204, after 500 seconds.

207

Data Comparison Section 5-17

208

The branching structure of this diagram is important in order to ensure that
00200, 00201, and 00202 are controlled properly as the timer counts down. Be-
cause all of the comparisons here use to the timer’s PV as reference, the other
operand for each CMP(020) must be in 4-digit BCD.

00000
| TIM 010

#5000 500.0 s

CMP(020)

TIMO10

#4000

25507
| 00200) Qutput at 100 s.

®

00200
: CMP(020)

TIMO10

#3000

25507
|

00201) Qutput at 200 s.

®

00201
: CMP(020)

TIMO10

#2000

25507

_| : @ Output at 300 s.
TIM 010
— | @ Output at 500 s.
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00007 AND 25507
00001 TIM 010 00008 ouT 00201
#5000 00009 LD 00201
00002 CMP(020) 00010 CMP(020)
TIM 010 TIM 010
#4000 #2000
00003 AND 25507 00011 AND 25507
00004 ouT 00200 00012 ouT 00202
00005 LD 00200 00013 LD TIM 010
00006 CMP(020) 00014 ouT 00204
TIM 010
#3000

Data Comparison Section 5-17
5-17-3 DOUBLE COMPARE - CMPL(060)
Ladder Symbols Operand Data Areas
Cp1: First word of first compare word pair
— CMPL(060)
IR, SR, AR, DM, EM, HR, TC, LR
Cp1
P Cp2: First word of second compare word pair
Cp2
P IR, SR, AR, DM, EM, HR, TC, LR

Limitations

Description

Precautions

Flags

Cp1 and Cp1+1 must be in the same data area, as must Cp2 and Cp2+1.

CMPL(060) is an expansion instruction. A Programming Device can be used to
reassign function code 060 to another expansion instruction.

When the execution condition is OFF, CMPL(060) is not executed. When the
execution condition is ON, CMPL(060) joins the 4-digit hexadecimal content of
Cp1+1 with that of Cp1, and that of Cp2+1 with that of Cp2 to create two 8-digit
hexadecimal numbers, Cp+1,Cp1 and Cp2+1,Cp2. The two 8-digit numbers are
then compared and the result is output to the GR, EQ, and LE flags in the SR
area.

Placing other instructions between CMPL(060) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

CMPL(060) cannot be used to compare signed binary data. Use CPSL(115)
instead. Refer to 5-17-9 DOUBLE SIGNED BINARY COMPARE — CPSL(115)
for details.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

GR: ON if Cp1+1,Cp1 is greater than Cp2+1,Cp2.
EQ: ON if Cp1+1,Cp1 equals Cp2+1,Cp2.
LE: ON if Cp1+1,Cp1 is less than Cp2+1,Cp2.

209

Data Comparison

Section 5-17

Example:

Saving CMPL(060) Results

oooo

The following example shows how to save the comparison result immediately. If
the content of HR 10, HR 09 is greater than that of 011, 010, then 00200 is turned
ON; if the two contents are equal, 00201 is turned ON; if content of HR 10, HR 09
is less than that of 011, 010, then 00202 is turned ON. In some applications, only
one of the three OUTs would be necessary, making the use of TR 0 unnecessary.
With this type of programming, 00200, 00201, and 00202 are changed only
when CMPL(060) is executed.

_| : CMPL(060)
HR 09
010
25505
—| : 00200) Greater Than
25506
_l I 00201 Equal
25507
—| : 00202) Less Than
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00004 ouT 00200
00001 ouT TRO 00005 LD TRO
00002 CMPL(060) 00006 AND 25506
HR 09 00007 ouT 00201
010 00008 LD TRO
00009 AND 25507
00003 AND 25505 00010 ouT 00202

5-17-4 BLOCK COMPARE — BCMP(068)

Limitations

210

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, EM, HR, TC, LR, #
—1 BCMP(068) —1 @BCMP(068)
CB: First comparison block word
CD CD
IR, DM, EM, HR, TC, LR, SR, AR
cB cB R: Result word
R IR, SR, AR, DM, EM, HR, TC, LR

Each lower limit word in the comparison block must be less than or equal to the
upper limit.

BCMP(068) is an expansion instruction. A Programming Device can be used to
reassign function code 068 to another expansion instruction.

Data Comparison

Section 5-17

Description

Flags

When the execution condition is OFF, BCMP(068) is not executed. When the
execution condition is ON, BCMP(068) compares CD to the ranges defined by a
block consisting of of CB, CB+1, CB+2, ..., CB+31. Each range is defined by two
words, the first one providing the lower limit and the second word providing the
upper limit. If CD is found to be within any of these ranges (inclusive of the upper
and lower limits), the corresponding bit in R is set. The comparisons that are
made and the corresponding bit in R that is set for each true comparison are
shown below. The rest of the bits in R will be turned OFF.

CB <CD <CB+1 Bit 00
CB+2<CD <CB+3 Bit 01
CB+4 <CD <CB+5 Bit 02
CB+6 <CD <CB+7 Bit 03
CB+8 <CD <CB+9 Bit 04
CB+10<CD <CB+11 Bit 05
CB+12<CD <CB+13 Bit 06
CB+14 <CD <CB+15 Bit 07
CB+16 <CD <CB+17 Bit 08
CB+18 <CD <CB+19 Bit 09
CB+20 < CD < CB+21 Bit 10
CB+22 <CD <CB+23 Bit 11
CB+24 <CD <CB+25 Bit 12
CB+26 < CD <CB+27 Bit 13
CB+28 < CD <CB+29 Bit 14
CB+30 < CD < CB+31 Bit 15

Normally the first word in the range is less than the second, but if the first word in
the range is greater than the second, the corresponding bit in R will be turned
OFF when CD is outside of the range defined by the two words, as shown in the
following diagram.

CB CB+1
f 1
0000 9999
CB+1 CcB
f 1
0000 9999

ER: The comparison block (i.e., CB through CB+31) exceeds the data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

211

Data Comparison Section 5-17

Example The following example shows the comparisons made and the results provided
for BCMP(068). Here, the comparison is made during each cycle when 00000 is
ON.
00000 "
I BCMP(068) Address | Instruction Operands
001 00000 | LD 00000
'R 10 00001 | BCMP(068)
HR 05 001
HR 10
HR 05
| CD 001 | Lower limits | [Upperlimits | | R: HR 05
[oo1 [o210] HR 10 0000 HR 11 0100 HR 0500 0
Compare data in IR 001 HR 12 0101 HR 13 0200 HR 0501 0
_ _ HR 14 0201 HR 15 0300 [—™_HR 0502 1
(W"‘I’t';:‘m:g?vt::]”fa%;? HR 16 0301 HR 17 0400 HR 0503 0
HR 18 0401 HR 19 0500 HR 0504 0
HR 20 0501 HR 21 0600 HR 0505 0
HR 22 0601 HR 23 0700 HR 0506 0
HR 24 0701 HR 25 0800 HR 0507 0
HR 26 0801 HR 27 0900 HR 0508 0
HR 28 0901 HR 29 1000 HR 0509 0
HR 30 1001 HR 31 1100 HR 0510 0
HR 32 1101 HR 33 1200 HR 0511 0
HR 34 1201 HR 35 1300 HR 0512 0
HR 36 1301 HR 37 1400 HR 0513 0
HR 38 1401 HR 39 1500 HR 0514 0
HR 40 1501 HR 41 1600 HR 0515 0

5-17-5 TABLE COMPARE - TCMP(085)

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, EM, HR, TC, LR, #
—— TCMP(085) — @TCMP(085)
TB: First comparison table word
CD CD
IR, AR, DM, EM, HR, TC, LR, SR
B B R: Result word
R R IR, SR, AR, DM, EM, HR, TC, LR
Limitations TB and TB+15 must be in the same data area.
Description When the execution condition is OFF, TCMP(085) is not executed. When the

execution condition is ON, TCMP(085) compares CD to the content of TB,
TB+1, TB+2, ..., and TB+15. If CD is equal to the content of any of these words,
the corresponding bit in R is set, e.g., if the CD equals the content of TB, bit 00 is
turned ON, if it equals that of TB+1, bit 01 is turned ON, etc. The rest of the bits in
R will be turned OFF.

Flags ER: The comparison table (i.e., TB through TB+15) exceeds the data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON if none of the words in the comparison table match CD, i.e., all of the
bits in R are OFF.

212

Data Comparison

Section 5-17

Example The following example shows the comparisons made and the results provided
for TCMP(085). Here, the comparison is made during each cycle when 00000 is
ON.
00000 Address | Instruction Operands
i TCMP(085) 00000 | LD 00000
oot 00001 | TCMP(085)
HR 10 001
HR 05 HR 10
HR 05
| CD: 001 [Upperlimits | [R:HRO5
| 001] o210 | HR 10 0100 HR 0500 0
Compare the data in IR 001 HR 11 0200 HR 0501 0
with the given ranges. HR 12 0210 |7 ™_HR 0502 1
HR 13 0400 HR 0503 0
HR 14 0500 HR 0504 0
HR 15 0600 HR 0505 0
HR 16 0210 [—* HR 0506 1
HR 17 0800 HR 0507 0
HR 18 0900 HR 0508 0
HR 19 1000 HR 0509 0
HR 20 0210 [—*__HRO0510 1
HR 21 1200 HR 0511 0
HR 22 1300 HR 0512 0
HR 23 1400 HR 0513 0
HR 24 0210 |—™ HRO0514 1
HR 25 1600 HR 0515 0

5-17-6 AREA RANGE COMPARE - ZCP(088)

Limitations

Description

Ladder Symbols

ZCP(088)

CD

LL

UL

Operand Data Areas

CD: Compare data

IR, SR, AR, DM, EM, HR, TC, LR, #

LL: Lower lim

it of range

IR, SR, AR, DM, EM, HR, TC, LR, #

UL: Upper lim

it of range

IR, SR, AR, DM, EM, HR, TC, LR, #

LL must be less than or equal to UL.
ZCP(088) is an expansion instruction. A Programming Device can be used to

reassign function code 088 to another expansion instruction.

When the execution condition is OFF, ZCP(088) is not executed. When the exe-
cution condition is ON, ZCP(088) compares CD to the range defined by lower
limit LL and upper limit UL and outputs the result to the GR, EQ, and LE flags in
the SR area. The resulting flag status is shown in the following table.

Comparison result Flag status
GR (SR 25505) | EQ (SR 25506) | LE (SR 25507)
CD<LL 0 0 1
LL<CD <UL 0 1 0
UL <CD 1 0 0

213

Data Comparison Section 5-17

Precautions

Placing other instructions between ZCP(088) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

Flags ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.
LL is greater than UL.
EQ: ONifLL<CD <UL
LE: ONif CD < LL.
GR: ON if CD > UL.
Example: The following example shows how to save the comparison result immediately. If
Saving ZCP(088) Results IR 100 > AB1F, IR 00200 is turned ON; if #0010 < IR 100 < AB1F, IR 00201 is

turned ON; if IR 100 < 0010, IR 00202 is turned ON.

ooooo
|

f ZCP(088)
IR 100
#0010
#AB1F
25505
L @ Greater Than
_l | (above range)
25506
1 Equal
_| | 00201 (withigllj':nge)
25507
_l | @ Less Than
| (below range)
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00005 ouT 00200
00001 ouT TRO 00006 LD TRO
00002 ZCP(088) IR 100 00007 AND 25506
#0010 00008 ouT 00201
#AB1F 00009 LD TRO
00003 LD TRO 00010 AND 25507
00004 AND 25505 00011 ouT 00202

5-17-7 DOUBLE AREA RANGE COMPARE - ZCPL(116)

Limitations

214

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, EM, HR, LR, TC
—1 ZCPL(116)
LL: Lower limit of range
CD
IR, SR, AR, DM, EM, HR, LR, TC
LL UL: Upper limit of range
uL IR, SR, AR, DM, EM, HR, LR, TC

The 8-digit value in LL+1,LL must be less than or equal to UL+1,UL.

CD and CD+1 must be in the same data area, as must LL and LL+1, and UL and
UL+1.

Data Comparison

Section 5-17

Description

Precautions

Flags

Example

ZCPL(116) is an expansion instruction. A Programming Device can be used to
reassign function code 116 to another expansion instruction.

When the execution condition is OFF, ZCPL(116) is not executed. When the
execution condition is ON, ZCPL(116) compares the 8-digit value in CD, CD+1
to the range defined by lower limit LL+1,LL and upper limit UL+1,UL and outputs
the result to the GR, EQ, and LE flags in the SR area. The resulting flag status is
shown in the following table.

Comparison result Flag status
GR EQ LE
(SR 25505) (SR 25506) (SR 25507)
CD,CD+1< LL+1,LL 0 0 1
LL+1,LL<CD, CD+1 <UL+1,UL |0 1 0
UL+1,UL < CD, CD+1 1 0 0

Placing other instructions between ZCPL(116) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

LL+1,LL is greater than UL+1,UL.
EQ: ONif LL+1,LL £ CD, CD+1 < UL+1,UL
LE: ON if CD, CD+1 < LL+1,LL.
GR: ONif CD, CD+1 > UL+1,UL.
Refer to 5-17-6 AREA RANGE COMPARE — ZCP(088) for an example. The only

difference between ZCP(088) and ZCPL(116) is the number of digits in the com-
parison data.

5-17-8 SIGNED BINARY COMPARE - CPS(114)

Limitations

Description

Precautions

Note

Operand Data Areas

Ladder Symbols Cp1: First compare word
IR, SR, AR, DM, EM, HR, TC, LR, #
—1 CPS(114)
Cp2: Second compare word
Cp1
P IR, SR, AR, DM, EM, HR, TC, LR, #
Cp2 Third operand: Set to 000.
000 -

CPS(114) is an expansion instruction. A Programming Device can be used to
reassign function code 114 to another expansion instruction.

When the execution condition is OFF, CPS(114) is not executed. When the exe-
cution condition is ON, CPS(114) compares the 16-bit (4-digit) signed binary
contents in Cp1 and Cp2 and outputs the result to the GR, EQ, and LE flags in the
SR area.

1. Refer to page 30 for details on 16-bit signed binary data.
2. Refer to 5-17-2 Compare — CMP(020) for details on saving comparison re-
sults.

Placing other instructions between CPS(114) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

215

Data Comparison

Section 5-17

Flags

5-17-9

Limitations

Description

Precautions

Flags

216

Note

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON if Cp1 equals Cp2.
LE: ON if Cp1 is less than Cp2.
GR: ON if Cp1 is greater than Cp2.

Comparison result Flag status
GR (SR 25505) | EQ (SR 25506) | LE (SR 25507)
Cp1 <Cp2 0 0 1
Cp1 =Cp2 0 1 0
Cp1 > Cp2 1 0 0

DOUBLE SIGNED BINARY COMPARE - CPSL(115)

Operand Data Areas

Ladder Symbols Cp1: First compare word
IR, SR, AR, DM, EM, HR, TC, LR
—1 CPSL(115)
Cp2: Second compare word
Cp1
P IR, SR, AR, DM, EM, HR, TC, LR
Cp2 Third operand: Set to 000.
000 L

Cp1 and Cp1+1 must be in the same data area, as must Cp2 and Cp2+1.
CPSL(115) is an expansion instruction. A Programming Device can be used to
reassign function code 115 to another expansion instruction.

When the execution condition is OFF, CPSL(115) is not executed. When the
execution condition is ON, CPSL(115) compares the 32-bit (8-digit) signed
binary contents in Cp1+1, Cp1 and Cp2+1, Cp2 and outputs the result to the GR,
EQ, and LE flags in the SR area.
1. Refer to page 30 for details on 32-bit signed binary data.
2. Refer to 5-17-2 Compare — CMP(020) for details on saving comparison re-
sults.

Placing other instructions between CPSL(115) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON if Cp1+1, Cp1 equals Cp2+1, Cp2.
LE: ON if Cp1+1, Cp1 is less than Cp2+1, Cp2.
GR: ON if Cp1+1, Cp1 is greater than Cp2+1, Cp2.

Comparison result Flag status
GR (SR 25505) | EQ (SR 25506) | LE (SR 25507)
Cp1+1, Cp1 < Cp2+1, Cp2 0 0 1
Cp1+1, Cp1 = Cp2+1, Cp2 0 1 0
Cp1+1, Cp1 > Cp2+1, Cp2 1 0 0

Data Comparison

Section 5-17

5-17-10 Input Comparison Instructions (300 to 328)

Description

— Mnem(Code)

Ladder Symbols

Operand Data Areas

S1: Comparison data 1

S1

S2

IR, SR, AR, DM, EM, HR, TC, LR, #

S2: Comparison data 2

IR, SR, AR, DM, EM, HR, TC, LR, #

Note “Mnem” in the ladder symbol above is replaced with the mnemonic of the specif-
ic instruction; “code” is replaced with the function code of the specific instruction.

When the execution condition is OFF, input comparison instructions are not
executed and execution continues to the remainder of the instruction line. When
the execution is ON, input comparison instructions compare constants and/or
the contents of specified words for either signed or unsigned data and will create
an ON execution condition when the comparison condition is met. If the compari-
son condition is not met, the remainder of the instruction line will be skipped and
execution will move to the next instruction line.

A total of 24 input comparison instructions are available. These can be input us-
ing various combinations of symbols and options. If no options are specified, the
comparison will be for one-word unsigned data.

Symbol

Option (data format) | Option (data length)

Equal)
Not equal)
Less than)

Greater than)

(
(
(
(Less than or equal)
(
(Greater than or equal)

S (signed data) L (double length)

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instructions
(i.e., instructions with the S option) handle signed binary data.

When using input comparison instructions, follow each input comparison
instruction in the program with another instruction on the same instruction line.

217

Data Comparison

Section 5-17

Precautions

Example

218

The following table shows the function codes, mnemonics, names, and func-
tions of the input comparison instructions.

Code | Mnemonic Name Function
300 = EQUAL TRUE WHEN S =S5,
301 =L DOUBLE EQUAL
302 =S SIGNED EQUAL
303 =SL DOUBLE SIGNED EQUAL
305 <> NOT EQUAL TRUE WHEN Sq # S,
306 <L DOUBLE NOT EQUAL
307 <>S SIGNED NOT EQUAL
308 <>SL DOUBLE SIGNED NOT EQUAL
310 < LESS THAN TRUE WHEN S4 < S,
311 <L DOUBLE LESS THAN
312 <S SIGNED LESS THAN
313 <SL DOUBLE SIGNED LESS THAN
315 <= LESS THAN OR EQUAL TRUE WHEN S; < S,
316 <=L DOUBLE LESS THAN OR EQUAL
317 <=S SIGNED LESS THAN OR EQUAL
318 <=SL DOUBLE SIGNED LESS THAN OR
EQUAL
320 > GREATER THAN TRUE WHEN S > S,
321 >L DOUBLE GREATER THAN
322 >S SIGNED GREATER THAN
323 >SL DOUBLE SIGNED GREATER THAN
325 >= GREATER THAN OR EQUAL TRUE WHEN S; > S,
326 >=L DOUBLE GREATER THAN OR
EQUAL
327 >=8 SIGNED GREATER THAN OR
EQUAL
328 >=SL DOUBLE SIGNED GREATER THAN
OR EQUAL

Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

<(310)

When IR 00000 is ON in the following example, the contents of DM 0100 and DM
0200 are compared in as binary data. If the contents of DM 0100 is less than that
of DM 0200, IR 05000 is turned ON and execution proceeds to the next line. If the
content of DM 0100 is not less than that of DM 0200, the remainder of the instruc-
tion line is skipped and execution moves to the next instruction line.

When IR 00000 is OFF, IR 05000 is turned OFF.

<S(312)

When IR 00001 is ON in the following example, the contents of DM 0110 and DM
0210 are compared as binary data. If the content of DM 0110 is less than that of
DM 0210, IR 05001 is turned ON and execution proceeds to the next line. If the
content of DM 0110 is not less than that of DM 0210, the remainder of the instruc-
tion line is skipped and execution moves to the next instruction line.

Data Comparison

Section 5-17

When IR 00001 is OFF, IR 05001 is turned OFF.

00000

<(310)

05000

DM 0100

00001

DM 0200

<S(312)

DM 0110

b

DM 0210

Comparison
without sign (<)

Comparison
with sign (<S)

S1: DM 0100

Decimal: 34580

S;: DM 0110

34580 > 14876

(Will not proceed to next line.)

Decimal: —30956

—30956 < 14876

(Will proceed to next line.)

Address | Instruction | Operands

00000 (LD 00000
00001 | <(310)

DM 0100

DM 0200

ouT 05000

00002 (LD 00001
00003 [<S(312)

DM 0110

DM 0210

ouT 05001

S,: DM 0200

S,: DM 0210

Decimal: 14876

Decimal: 14876

219

Data Conversion

Section 5-18

5-18 Data Conversion

The conversion instructions convert word data that is in one format into another
format and output the converted data to specified result word(s). Conversions
are available to convert between binary (hexadecimal) and BCD, to 7-segment
display data, to ASCII, and between multiplexed and non-multiplexed data. All of
these instructions change only the content of the words to which converted data
is being moved, i.e., the content of source words is the same before and after
execution of any of the conversion instructions.

5-18-1 BCD-TO-BINARY - BIN(023)

Description

Flags

220

Ladder Symbols Operand Data Areas
S: Source word (BCD)
BIN(023) — @BIN(023)
IR, SR, AR, DM, EM, HR, TC, LR
S S
R: Result word
R R
IR, SR, AR, DM, EM, HR, LR

When the execution condition is OFF, BIN(023) is not executed. When the exe-
cution condition is ON, BIN(023) converts the BCD content of S into the numeri-
cally equivalent binary bits, and outputs the binary value to R. Only the content of
R is changed; the content of S is left unchanged.

BCD S
Binary R

BIN(023) can be used to convert BCD to binary so that displays on the Program-
ming Console or any other programming device will appear in hexadecimal
rather than decimal. It can also be used to convert to binary to perform binary
arithmetic operations rather than BCD arithmetic operations, e.g., when BCD
and binary values must be added.

ER: The content of S is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the result is zero.
N: 25402 is always OFF.

Data Conversion Section 5-18

5-18-2 DOUBLE BCD-TO-DOUBLE BINARY — BINL(058)

Ladder Symbols Operand Data Areas
S: First source word (BCD)
— BINL(058) — @BINL(058)
IR, SR, AR, DM, EM, HR, TC, LR
S S
R: First result word
R R
IR, SR, AR, DM, EM, HR, LR
Description When the execution condition is OFF, BINL(058) is not executed. When the exe-

cution condition is ON, BINL(058) converts an eight-digit number in S and S+1
into 32-bit binary data, and outputs the converted data to R and R+1.

BCD S+1 S
Binary R+1 R
Flags ER: The contents of S and/or S+1 words are not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the result is zero.
N: 25402 is always OFF.

5-18-3 BINARY-TO-BCD - BCD(024)

Ladder Symbols Operand Data Areas
S: Source word (binary)
— BCD(024) — @BCD(024)
IR, SR, AR, DM, EM, HR, LR
S S
R: Result word
R R
IR, SR, AR, DM, EM, HR, LR
Description BCD(024) converts the binary (hexadecimal) content of S into the numerically

equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

Binary S
BCD R

BCD(024) can be used to convert binary to BCD so that displays on the Pro-
gramming Console or any other programming device will appear in decimal
rather than hexadecimal. It can also be used to convert to BCD to perform BCD
arithmetic operations rather than binary arithmetic operations, e.g., when BCD
and binary values must be added.

221

Data Conversion

Section 5-18

Signed Binary Data

Flags

Note If the content of S exceeds 270F, the converted result would exceed 9999 and

BCD(024) will not be executed. When the instruction is not executed, the content
of R remains unchanged.

BCD(024) cannot be used to convert signed binary data directly to BCD. To con-
vert signed binary data, first determine whether the data is positive or negative. If
it is positive, BCD(024) can be used to convert the data to BCD. If it is negative,
use the 2’s COMPLEMENT — NEG(160) instruction to convert the data to un-
signed binary before executing BCD(024). Refer to page 30 for details on signed
binary data.

ER: S is greater than 270F.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the result is zero.

5-18-4 DOUBLE BINARY-TO-DOUBLE BCD - BCDL(059)

Limitations

Description

Signed Binary Data

Flags

222

Ladder Symbols Operand Data Areas
S: First source word (binary)
BCDL(059) — @BCDL(059)

IR, SR, AR, DM, EM, HR, LR

S S
R: First result word

R R

IR, SR, AR, DM, EM, HR, LR

If the content of S exceeds O5F5EOQFF, the converted result would exceed
99999999 and BCDL(059) will not be executed. When the instruction is not exe-
cuted, the content of R and R+1 remain unchanged.

S and S+1 must be in the same data area as must R and R+1.

BCDL(059) converts the 32-bit binary content of S and S+1 into eight digits of
BCD data, and outputs the converted data to R and R+1.

Binary S+1 S

BCD R+1 R

BCD(024) cannot be used to convert signed binary data directly to BCD. To con-
vert signed binary data, first determine whether the data is positive or negative. If
it is positive, BCD(024) can be used to convert the data to BCD. If it is negative,
use the DOUBLE 2’s COMPLEMENT — NEGL(161) instruction to convert the
data to unsigned binary before executing BCD(024). Refer to page 30 for details
on signed binary data.

ER: Content of R and R+1 exceeds 99999999.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the result is zero.

Data Conversion Section 5-18

5-18-5 HOURS-TO-SECONDS — SEC(065)

Operand Data Areas

Ladder Symbols S: Beginning source word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR
— SEC(065) — @SEC(065)
R: Beginning result word (BCD)
S S
IR, SR, AR, DM, EM, HR, TC, LR
R R 000: Set to 000.
000 000
Limitations S and S+1 must be within the same data area. R and R+1 must be within the

same data area. S and S+1 must be BCD and must be in the proper hours/minu-
tes/seconds format.

SEC(065) is an expansion instruction. A Programming Device can be used to
reassign function code 065 to another expansion instruction.

Description SEC(065) is used to convert time notation in hours/minutes/seconds to an
equivalent in just seconds.

For the source data, the seconds are designated in bits 00 through 07 and the
minutes are designated in bits 08 through 15 of S. The hours are designated in
S+1. The maximum is thus 9,999 hours, 59 minutes, and 59 seconds.

The result is output to R and R+1. The maximum obtainable value is 35,999,999
seconds.

Flags ER: S and S+1 or R and R+1 are not in the same data area.
S and/or S+1 do not contain BCD.
Number of seconds and/or minutes exceeds 59.
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: Turns ON when the result is zero.

Example When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the hours, minutes, and seconds given in HR 12 and
HR 13 to seconds and store the results in DM 0100 and DM 0101 as shown.

00000
}r SEC(065) Address | Instruction Operands
HR 12 00000 | LD NOT 00000
DM 0100 00001 | SEC(065)
000 HR 12
DM 0100
HR 12 3| 2|0 |7 2,815 hrs, 32 min, 07 s 000
HR 13 2| 8| 1|5
DM 0100 5| 9| 2|7 10,135,927 s
DM 0101 1] o] 1|3

223

Data Conversion

Section 5-18

5-18-6 SECONDS-TO-HOURS — HMS(066)

Limitations

Description

Flags

Example

00000

Operand Data Areas

Ladder Symbols S: Beginning source word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR
HMS(066) —1 @HMS(066)
R: Beginning result word (BCD)
S S
IR, SR, AR, DM, EM, HR, TC, LR
R R 000: Set to 000.
000 000

S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be between 0 and
35,999,999 seconds.

HMS(066) is an expansion instruction. A Programming Device can be used to
reassign function code 066 to another expansion instruction.

HMS(066) is used to convert time notation in seconds to an equivalent in hours/
minutes/seconds.

The number of seconds designated in S and S+1 is converted to hours/minutes/
seconds and placed in R and R+1.

For the results, the seconds is placed in bits 00 through 07 and the minutes is
placed in bits 08 through 15 of R. The hours is placed in R+1. The maximum will
be 9,999 hours, 59 minutes, and 59 seconds.

ER: S and S+1 or R and R+1 are not in the same data area.
S and/or S+1 do not contain BCD or exceed 36,000,000 seconds.
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: Turns ON when the result is zero.

When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the seconds given in HR 12 and HR 13 to hours, min-
utes, and seconds and store the results in DM 0100 and DM 0101 as shown.

224

Al

HR 12
HR 13

DM 0100
DM 0101

10,135,927 s

2,815 hrs, 32 min, 07 s

HMS(066)

Address

Instruction

Operands

HR 12

00000

LD NOT

00000

DM 0100

00001

HMS(066)

000

HR 12

DM 0100

000

Data Conversion

Section 5-18

5-18-7 4-TO-16/8-TO-256 DECODER — MLPX(076)

Limitations

Description

4-bit to 16-bit Decoder

Control Word

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, EM, HR, TC, LR
MLPX(076) —1 @MLPX(076)
C: Control word
S S
IR, SR, AR, DM, EM, HR, TC, LR, #

c C R: First result word
R R IR, SR, AR, DM, EM, HR, LR

When the leftmost digit of C is 0, the rightmost two digits of C must each be be-
tween 0 and 3.

When the leftmost digit of C is 1, the rightmost two digits of C must each be be-
tween 0 and 1.

All result words must be in the same data area.

Depending on the value of C, MLPX(076) operates as a 4-bit to 16-bit decoder or
an 8-bit to 256-bit decoder.

MLPX(076) operates as a 4-bit to 16-bit decoder when the leftmost digit of C is 0.
The hexadecimal value of the digits in S are used to specify bits in up to 4 result
words. The specified bit in each result word is turned ON, and the other 15 bits in
each word are turned OFF.

When the execution condition is OFF, MLPX(076) is not executed. When the
execution condition is ON, MLPX(076) converts up to four, four-bit hexadecimal
digits from S into decimal values from 0 to 15, each of which is used to indicate a
bit position. The bit whose number corresponds to each converted value is then
turned ON in a result word. If more than one digit is specified, then one bit will be
turned ON in each of consecutive words beginning with R. (See examples, be-
low.)

The digits of C are set as shown below. Set the leftmost digit of C to 0 to specify
4-bit to 16-bit decoding.

Digit number: 3210

L__» Specifies the first digit to be converted (0 to 3)

— Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

L » Notused. Setto 0.

—— = A value of 0 specifies 4-bit to 16-bit decoding.

225

Data Conversion

Section 5-18

8-bit to 256-bit Decoder

Control Word

226

Some example C values and the digit-to-word conversions that they produce
are shown below.

C: 0010 C: 0030
S S
0 R 0 R
1 R+1 1 R+1
2 2 R+2
3 3 R+3
C: 0031 C: 0023
S S
0 R 0 R
1 R+1 1 R+1
2 R+2 2 R+2
3 R+3 3

The following is an example of a one-digit decode operation from digit number 1
of S, i.e., here C would be 0001.

Source word

o — e —

/ Bit C (i.e., bit number 12) turned ON.

" First result word
ojfofjfojt1|ojojofojofjojojofojofojo

The first digit and the number of digits to be converted are designated in C. If
more digits are designated than remain in S (counting from the designated first
digit), the remaining digits will be taken starting back at the beginning of S. The
final word required to store the converted result (R plus the number of digits to be
converted) must be in the same data area as R, e.qg., if two digits are converted,
the last word address in a data area cannot be designated; if three digits are con-
verted, the last two words in a data area cannot be designated.

MLPX(076) operates as an 8-bit to 256-bit decoder when the leftmost digit of C is
set to 1. The hexadecimal value of the two bytes in S are used to specify a bit in
one or two groups of 16 consecutive result words (256 bits). The specified bit in
each group is turned ON, and the other 255 bits in the group are turned OFF.

The digits of C are set as shown below. Set the leftmost digit of C to 1 to specify
8-bit to 256-bit decoding.

Digit number: 32 10

L» Specifies the first byte to be converted (0 or 1).
0: Rightmost byte
1: Leftmost byte

—— Number of bytes to be converted (0 or 1).
0: 1 byte
1: 2 bytes

L » Notused. Set to 0.

———— A value of 1 specifies 8-bit to 256-bit decoding.

Data Conversion

Section 5-18

Bit Bit

15 00

ofofo]- - -Jofofo] -

AN /
R+15

Flags

The 4 possible C values and the conversions that they produce are shown be-
low. (In S, 0 indicates the rightmost byte and 1 indicates the leftmost byte.)

C: 1000 C: 1001

s s

0 Rto R+15 0 Rto R+15

1 R+16 to R+31 1 "] R+16 to R+31
C: 1010 C: 1011

s S

0 Rto R+15 0 Rto R+15

1 R+16 to R+31 1 ><: R+16 to R+31

The following is an example of a one-byte decode operation from the rightmost
byte of S (C would be 1000 in this case).

Source word
f

1
2 C | Bit 2C (i.e., bit number 12 in
the third word) turned ON.

>
~
~
e
Bit pd Bit Bit Bit Bit Bit
15 e 00 15 00 15 00
- (0]ojo[1]ofo]o[o]o[o]o[o]o[o]o[o]ofofo]- - -[o]o[o]ofofo[- - -[o]o]0]
AN / \\ / \\ /
R+2 R+1 R

ER: Undefined control word.
The result words are not all in the same data area.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

227

Data Conversion

Section 5-18

Example: The following program converts three digits of data from LR 20 to bit positions
4-bit to 16-bit Decoding and turns ON the corresponding bits in three consecutive words starting with
HR 10.
oo?oo MLPX(076) Address | Instruction Operands

DM 0020 00000 | LD 00000

0021 00001 | MLPX(076)

TR 10 DM 0020

#0021
HR 10
S:LR20 R: HR 10 | | R+1: HR 11 | | R+2: HR 12
DM 00 20 HR 1000 0 HR 1100 0 r-# HR1200 1
DM 01 21 Not HR 1001 0 HR 1101 0 : HR 1201 0
DM 02 22 Converted| HR 1002 0 HR 1102 0 X HR 1202 0
DM 03 23 i HR 1003 0 HR 1103 0 ! HR 1203 0
DM04 | 1 | 20 15 HR 1004 0 HR 1104 0 ' HR 1204 0
DMO5 | 1 | 2" 1| |-T-. . HR 1005 0 HR 1105 0 . HR 1205 0
DMO6 | 1 | 22 ! HR 1006 0 r -» _HR 1106 1 ' HR 1206 0
DMO7 | 1 | 28 1 ' HR 1007 0 X HR 1107 0 ! HR 1207 0
DM08 | 0 | 20 5 : HR 1008 0 ; HR 1108 0 ' HR 1208 0
DMO9 | 1 | 2'| 2|l ., . HR 1009 0 ' HR 1109 0 X HR 1209 0
DM10 | 1 [22 L HR 1010 0 : HR 1110 0 X HR 1210 0
DM 11 0 | 28 v HR 1011 0 X HR 1111 0 ' HR 1211 0
DM12 | 0 | 20 1 vV [HR1o012 0 ' HR 1112 o | HR 1212 0
DM 13 0o |2 a|l?® Vo HR 1013 0 : HR 1113 0 . HR 1213 0
DM14 | o [22 Do HR 1014 0 X HR 1114 0 ; HR 1214 0
pm15 | o [28 1 v v vs{ HR1015 1 ; HR 1115 0 : HR 1215 0
' ' '
)

5-18-8 16-T0O-4/256-TO-8 ENCODER — DMPX(077)

Ladder Symbols
— DMPX(077) —1 @DMPX(077)
S S
R R
C C

Limitations

Description

228

Operand Data Areas

S: First source word

IR, SR, AR, DM, EM, HR, TC, LR

R: Result word

IR, SR, AR, DM, EM, HR, LR

C: Control Word

IR, SR, AR, DM, EM, HR, TC, LR,
#

When the leftmost digit of C is 0, the rightmost two digits of C must each be be-
tween 0 and 3.

When the leftmost digit of C is 1, the rightmost two digits of C must each be be-
tween 0 and 1.

All source words must be in the same data area.

Depending on the value of C, MLPX(076) operates as a 16-bit to 4-bit encoder or
an 256-bit to 8-bit encoder.

Data Conversion

Section 5-18

16-bit to 4-bit Encoder

Control Word

DMPX(077) operates as a 16-bit to 4-bit encoder when the leftmost digit of C is 0.
When the execution condition is OFF, DMPX(077) is not executed. When the
execution condition is ON, DMPX(077) determines the position of the highest
ON bit in S, encodes it into single-digit hexadecimal value corresponding to the
bit number, then transfers the hexadecimal value to the specified digit in R. The
digits to receive the results are specified in C, which also specifies the number of
digits to be encoded.

The digits of C are set as shown below. Set the leftmost digit of C to 0 to specify
16-bit to 4-bit encoding.

Digit number: 3210

L » Specifies the first digit in R to receive converted data (0 to 3).

— Number of words to be converted (0 to 3).
0: 1 word
1: 2 words
2: 3 words
3: 4 words

L » Notused. Setto 0.

——— A value of 0 specifies 16-bit to 4-bit encoding.

Some example C values and the word-to-digit conversions that they produce
are shown below.

C: 0011 C: 0030
R R
S 0 S = 0
S+1 \ 1 S+1 L
\ 2 S+2 » 2
3 S+3 > 3

C: 0013 C: 0032
R R
s 0 S 0
S+1 1 S+1 1
2 S+2 2
3 S+3 3

The following is an example of a one-digit encode operation to digit number 1 of
R, i.e., here C would be 0001.

First source word

i |

000|1i000100010110
L.‘.u

\ C transferred to indicate bit number 12 as
\ the highest ON bit.
\

A
Result word 1

Cc

Up to four digits from four consecutive source words starting with S may be en-
coded and the digits written to R in order from the designated first digit. If more
digits are designated than remain in R (counting from the designated first digit),
the remaining digits will be placed at digits starting back at the beginning of R.
The final word to be converted (S plus the number of digits to be converted) must
be in the same data area as SB.

229

Data Conversion Section 5-18

256-bit to 8-bit Encoder DMPX(077) operates as a 256-bit to 8-bit encoder when the leftmost digit of C is
setto 1.

When the execution condition is OFF, DMPX(077) is not executed. When the
execution condition is ON, DMPX(077) determines the position of the highest
(leftmost) ON bit in the group of 16 source words from S to S+15 or S+16 to
S+31, encodes it into a two-digit hexadecimal value corresponding to the loca-
tion of the bit among the 256 bits in the group, then transfers the hexadecimal
value to the specified byte in R. The byte to receive the result is specified in C,
which also specifies the number of bytes to be encoded.

Control Word The digits of C are set as shown below. Set the leftmost digit of C to 1 to specify
256-bit to 8-bit decoding.

Digit number: 32 10

L Specifies the first byte in R to receive converted data (0 or 1).
0: Rightmost byte
1: Leftmost byte

— Number of bytes to be encoded (0 or 1).
0: 1 byte
1: 2 bytes

L Not used. Set to 0.

———— A value of 1 specifies 256-bit to 8-bit encoding.

Three possible C values and the conversions that they produce are shown be-
low. (In R, 0 indicates the rightmost byte and 1 indicates the leftmost byte.)

C: 1000 C: 1010 C: 1011

R R
S to S+15 0 Sto S+15 0 S to S+15 0
S+16 to S+31 p S+16 to S+31) Se1610 5081 o~]

The following is an example of a one-byte encode operation to the rightmost byte
of R (C would be 1000 in this case).

Bit Bit Bit Bit Bit Bit
15 00 15 00 15 00
ofofofoft[+]1[1]1]1]1]o]r[1]ofo]of1][1]- - -Jo[t]o] - - - [1][1]1][- - -[o]o]o]
AN /' \ /
S\ S+15 S+14 S
\\
AN
Resultword™, |
i F B -i Bit FB (bit 251 of 0 to 255) is the highest ON bit of the
C 3 16-word group, so FB is written to the rightmost bit of R.

Flags ER: Undefined control word.
The source words are not all in the same data area.

Content of the source words is zero. (There isn’t an ON bit in the source
words.)

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

230

Data Conversion

Section 5-18

Example:

16-bit to 4-bit Encoding

00000

When 00000 is ON, the following diagram encodes IR words 010 and 011 to the
first two digits of HR 20 and then encodes LR 10 and 11 to the last two digits of
HR 20. Although the status of each source word bit is not shown, it is assumed
that the bit with status 1 (ON) shown is the highest bit that is ON in the word.

5-18-9 7-SEGMENT DECODER - SDEC(078)

Limitations

Description

\ DMPX(077) Address | Instruction Operands
I
010 00000 LD 00000
HR 20 00001 DMPX(077)
#0010 010
HR 20
DMPX(077) #0010
1o 00002 | DMPX(077)
LR 10
HR 20
HR 20
#0012 70012
IR 010 IR 011
01000 01100
01011 | 1 | — 01109 | 1
01012| 0 01110 | O
LA L HR 20
01015| 0 01115 | 0 —
| Digit 0 B
> Digit 1 9
LR 10 LR 11 Lo ogiz |1
LR 1000 LR 1100 —>| Digit3 8
LR 1001| 1 |— :
LR 1002| 0 LR 1108] 1
- : LR 1109] 0
LR 1015| 0 LR 1115 0

Operand Data Areas

Ladder Symbols S: Source word (binary)
IR, SR, AR, DM, EM, HR, TC, LR
SDEC(078) — @SDEC(078)
Di: Digit designator
S S
IR, SR, AR, DM, EM, HR, TC, LR, #

Di Di D: First destination word
D D

IR, SR, AR, DM, EM, HR, LR

Di must be within the values given below
All destination words must be in the same data area.

When the execution condition is OFF, SDEC(078) is not executed. When the
execution condition is ON, SDEC(078) converts the designated digit(s) of S into
the equivalent 8-bit, 7-segment display code and places it into the destination
word(s) beginning with D.

231

Data Conversion

Section 5-18

Digit Designator

232

Any or all of the digits in S may be converted in sequence from the designated
first digit. The first digit, the number of digits to be converted, and the half of D to
receive the first 7-segment display code (rightmost or leftmost 8 bits) are desig-
nated in Di. If multiple digits are designated, they will be placed in order starting
from the designated half of D, each requiring two digits. If more digits are desig-
nated than remain in S (counting from the designated first digit), further digits will
be used starting back at the beginning of S.

The digits of Di are set as shown below.

Digit number:

3210

L___» Specifies the first digit to receive converted data (0 to 3).

— Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

—— First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Not used; set to 0.

Some example Di values and the 4-bit binary to 7-segment display conversions
that they produce are shown below.

Di: 0011 Di: 0030
S digits D S digits D
0 1st half 0 1st half
T 2nd half 1 2nd half
P | 3
3 3 \ D+
\ 1st half
2nd half
Di: 0112 Di: 0130
S digits D S digits D
0 1st half ? \ 1st half
-
2nd half 2nd half
5 / 2
3 D+1 3 D+1
\ 1st half 1st half
2nd half 2nd half
D+2
1st half
2nd half

Data Conversion Section 5-18

Example The following example shows the data to produce an 8. The lower case letters
show which bits correspond to which segments of the 7-segment display. The
table underneath shows the original data and converted code for all hexadeci-

mal digits.
a
Di S D -—
Bit 00 f ' ' b
or g
0 201 0 bitog | 1 [@ -
1 >
1 o — 1: Second digit 2’1 ! b e' ' c
0 x10 0 22| o 1M c A
0 231 0 1M d d
——
0 20| o 1 e
0 2t o | 8 1 f
x101| ™ 0: One digit 1
0 221 0 1= g
1 3| 1 Bit0o7| o
or
0 20| o bit 15
1 5 21| 1
x10| —* Qor1: 2
1 bits 00 through 07 or 221 1
08 through 15.
1 23| 1
1 20| 1
0 3 211 0
X10% + = Not used. 3
1 22| 1
1 23] 1
Original data Converted code (segments) Display
Digit Bits - g f e d c b a
0 0 0 0 0 0 0 1 1 1 1 1 1 o
1 0 0 0 1 0 0 0 0 0 1 1 0 !
2 0 0 1 0 0 1 0 1 1 0 1 1 2
3 0 0 1 1 0 1 0 0 1 1 1 1 3
4 0 1 0 0 0 1 1 0 0 1 1 0 U
5 0 1 0 1 0 1 1 0 1 1 0 1 g
6 0 1 1 0 0 1 1 1 1 1 0 1 g
7 0 1 1 1 0 0 1 0 0 1 1 1 mn
8 1 0 0 0 0 1 1 1 1 1 1 1 a
9 1 0 0 1 0 1 1 0 1 1 1 1 q
A 1 0 1 0 0 1 1 1 0 1 1 1 =]
B 1 0 1 1 0 1 1 1 1 1 0 0 =
C 1 1 0 0 0 0 1 1 1 0 0 1 r
D 1 1 0 1 0 1 0 1 1 1 1 0 a
E 1 1 1 0 0 1 1 1 1 0 0 1 £
F 1 1 1 1 0 1 1 1 0 0 0 1 [
Flags ER: Incorrect digit designator, or data area for destination exceeded

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

233

Data Conversion

Section 5-18

5-18-10 ASCIl CONVERT — ASC(086)

Limitations

Description

Digit Designator

234

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, EM, HR, TC, LR
ASC(086) — @ASC(086)
Di: Digit designator
S S
IR, SR, AR, DM, EM, HR, TC, LR, #

Di Di D: First destination word

D D IR, SR, AR, DM, EM, HR, LR

Di must be within the values given below
All destination words must be in the same data area.

When the execution condition is OFF, ASC(086) is not executed. When the exe-
cution condition is ON, ASC(086) converts the designated digit(s) of S into the
equivalent 8-bit ASCII code and places it into the destination word(s) beginning
with D.

Any or all of the digits in S may be converted in order from the designated first
digit. The first digit, the number of digits to be converted, and the half of D to re-
ceive the first ASCII code (rightmost or leftmost 8 bits) are designated in Di. If
multiple digits are designated, they will be placed in order starting from the des-
ignated half of D, each requiring two digits. If more digits are designated than
remain in S (counting from the designated first digit), further digits will be used
starting back at the beginning of S.

Refer to Appendix I for a table of extended ASCII characters.
The digits of Di are set as shown below.

Digit number: 32 1 0

L____» Specifies the first digit to be converted (0 to 3).

— Number of digits to be converted (0 to 3)
0: 1 digit

1: 2 digits

2: 3 digits

3: 4 digits

—— First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

—— Parity 0: none,
1: even,
2: 0dd

Data Conversion Section 5-18

Some examples of Di values and the 4-bit binary to 8-bit ASCII conversions that
they produce are shown below.

Di: 0011 Di: 0030
S D S D
0 / 1st half 0 1st half
1 / 2nd half 1 2nd half
2 2
3 3 \ D+1
\ 1st half
2nd half
Di: 0112 Di: 0130
S D S D
0 1st half 0 \ 1st half
1 2nd half ! 2nd half
> / 2
3 \ D+1 3 D+1
1st half 1st half
2nd half 2nd half
D+2
1st half
2nd half
Parity The leftmost bit of each ASCII character (2 digits) can be automatically adjusted
for either even or odd parity. If no parity is designated, the leftmost bit will always

be zero.

When even parity is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even, e.g., when adjusted for even parity, ASCII “31”
(00110001) will be “B1” (10110001: parity bit turned ON to create an even num-
ber of ON bits); ASCII “36” (00110110) will be “36” (00110110: parity bit turned
OFF because the number of ON bits is already even). The status of the parity bit
does not affect the meaning of the ASCII code.

When odd parity is designated, the leftmost bit of each ASCII character will be
adjusted so that there is an odd number of ON bits.

Flags ER: Incorrect digit designator, or data area for destination exceeded.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

5-18-11 ASCII-TO-HEXADECIMAL - HEX(162)

Operand Data Areas

Ladder Symbols S: First source word
IR, SR, AR, DM, EM, HR, TC, LR
—1 HEX(162) —1 @HEX(162)
Di: Digit designator
S S
IR, SR, AR, DM, EM, HR, TC, LR, #
Di Di D: Destination word
D D IR, SR, AR, DM, EM, HR, LR

235

Data Conversion

Section 5-18

Limitations

Description

Digit Designator

236

Di must be within the values given below.
All source words must be in the same data area.

Bytes in the source words must contain the ASCII code equivalent of hexadeci-
mal values, i.e., 30t0 39 (0 t0 9), 41 to 46 (Ato F), or 61 to 66 (a to f).

When the execution condition is OFF, HEX(162) is not executed. When the exe-
cution condition is ON, HEX(162) converts the designated byte(s) of ASCII code
from the source word(s) into the hexadecimal equivalent and places it into D.

Up to 4 ASCII codes may be converted beginning with the designated first byte
of S. The converted hexadecimal values are then placed in D in order from the
designated digit. The first byte (rightmost or leftmost 8 bits), the number of bytes
to be converted, and the digit of D to receive the first hexadecimal value are
designated in Di. If multiple bytes are designated, they will be converted in order
starting from the designated half of S and continuing to S+1 and S+2, if
necessary.

If more digits are designated than remain in D (counting from the designated first
digit), further digits will be used starting back at the beginning of D. Digits in D
that do not receive converted data will not be changed.

The digits of Di are set as shown below.

Digit number: 3210

L » Specifies the first digit of D to be used (0 to 3).

— Number of bytes to be converted (0 to 3)
0: 1 byte (2-digit ASCII code)
1: 2 bytes
2: 3 bytes
3: 4 bytes

—— First byte of S to be used.
0: Rightmost 8 bits (15t byte)
1: Leftmost 8 bits (29 byte)

—— Parity 0: none
1: even
2: odd

Data Conversion

Section 5-18

ASCII Code Table

Parity

Some examples of Di values and the 8-bit ASCII to 4-bit hexadecimal conver-
sions that they produce are shown below.

Di: 0011 Di: 0030
S D S D
15t pyte \ 0 1St pyte > 0
2nd pyte 1 2nd pyte > 1
3 S+ / 3
15t pyte /
2nd pyte
Di: 0023 Di: 0133
S D S
15t pyte 0 1St pyte D
2nd pyte 1 2nd pyte 0
2 1
S+1 3 S+1 >
1st pyte 1st pyte 3
2nd pyte 2nd pyte
S+2
1st pyte
2nd pyte

The following table shows the ASCII codes before conversion and the hexadeci-
mal values after conversion. Refer to Appendix I for a table of ASCII characters.

Original data Converted data

ASCII Code Bit status (See note.) Digit Bits

30 * 0 1 1 0 0 0 0 0 0 0 0 0
31 * 0 1 1 0 0 0 1 1 0 0 0 1
32 * 0 1 1 0 0 1 0 2 0 0 1 0
33 * 0 1 1 0 0 1 1 3 0 0 1 1
34 * 0 1 1 0 1 0 0 4 0 1 0 0
35 * 0 1 1 0 1 0 1 5 0 1 0 1
36 * 0 1 1 0 1 1 0 6 0 1 1 0
37 * 0 1 1 0 1 1 1 7 0 1 1 1
38 * 0 1 1 1 0 0 0 8 1 0 0 0
39 * 0 1 1 1 0 0 1 9 1 0 0 1
41 * 1 0 1 0 0 0 1 A 1 0 1 0
42 * 1 0 1 0 0 1 0 B 1 0 1 1
43 * 1 0 1 0 0 1 1 C 1 1 0 0
44 * 1 0 1 0 1 0 0 D 1 1 0 1
45 * 1 0 1 0 1 0 1 E 1 1 1 0
46 * 1 0 1 0 1 1 0 F 1 1 1 1

Note The leftmost bit of each ASCII code is adjusted for parity.

The leftmost bit of each ASCII character (2 digits) is automatically adjusted for
either even or odd parity.

With no parity, the leftmost bit should always be zero. With odd or even parity, the
leftmost bit of each ASCII character should be adjusted so that there is an odd or
even number of ON bits.

If the parity of the ASCII code in S does not agree with the parity specified in Di,
the ER Flag (SR 25503) will be turned ON and the instruction will not be
executed.

237

Data Conversion

Section 5-18

Flags

Example

00000

ER: Incorrect digit designator, or data area for destination exceeded.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

In the following example, the 2"d byte of LR 10 and the 15t byte of LR 11 are con-
verted to hexadecimal values and those values are written to the first and se-
cond bytes of IR 010.

Address | Instruction Operands
@HEX(162)
LR 10 00000 | LD 00000
HR 10 00001 @HEX(162)
010 LR 10
HR 10
010

HR10 [0]1][1]o0]

10 []1]3]0]

Conversion to
hexadecimal

5-18-12 SCALING — SCL(194)

Ladder Symbols Operand Data Areas
S: Source word
— SCL(194) — @SCL(194)
IR, SR, AR, DM, EM, HR, TC, LR, #
S S
P1: First parameter word
P1 P1
IR, SR, AR, DM, EM, HR, TC, LR
R R R: Result word
IR, SR, AR, DM, EM, HR, LR

Limitations

Description

238

P1 and P1+2 must be BCD.
P1 through P1+3 must be in the same data area.
P1+1 and P1+3 must not be set to the same value.

SCL(194) is an expansion instruction. A Programming Device can be used to
reassign function code 194 to another expansion instruction.

SCL(194) is used to linearly convert a 4-digit hexadecimal value to a 4-digit BCD
value. Unlike BCD(024), which converts a 4-digit hexadecimal value to its 4-digit
BCD equivalent (Spex — Sgcp), SCL(194) can convert the hexadecimal value
according to a specified linear relationship. The conversion line is defined by two
points specified in the parameter words P1 to P1+3.

When the execution condition is OFF, SCL(194) is not executed. When the exe-
cution condition is ON, SCL(194) converts the 4-digit hexadecimal value in S to
the 4-digit BCD value on the line defined by points (P1, P1+1) and (P1+2, P1+3)
and places the result in R. The result is rounded off to the nearest integer. If the
result is less than 0000, then 0000 is written to R, and if the result is greater than
9999, then 9999 is written to R.

Data Conversion

Section 5-18

Flags

Example

00000

The following table shows the functions and ranges of the parameter words:

Parameter Function Range Comments

P1 BCD point #1 (Ay) | 0000 to 9999

P1+1 Hex. point #1 (Ax) | 0000 to FFFF Do not set P1+1=P1+3.
P1+2 BCD point #2 (By) | 0000 to 9999

P1+3 Hex. point #2 (Bx) | 0000 to FFFF Do not set P1+3=P1+1.

The following diagram shows the source word, S, converted to D according to
the line defined by points (Ay, Ax) and (By, By).

Value after conversion
(BCD)

BY """""""""""

Value before conversion
Ax s By (Hexadecimal)

The results can be calculated by first converting all values to BCD and then using
the following formula.

Results = By — [(By — Ay)/(Bx — Ax) X (Bx — S)]

ER: The value in P1+1 equals that in P1+3.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

P1 and P1+3 are not in the same data area, or other setting error.

EQ: ON when the result, R, is 0000.

When 00000 is turned ON in the following example, the BCD source data in DM
0100 (#0100) is converted to hexadecimal according to the parameters in DM
0150 to DM 0153. The result (#0512) is then written to DM 0200.

Address | Instruction Operands
@SCL(194)
DM 0100 00000 |LD 00000
DM 0150 00001 @SCL(194)
DM 0200 DM 0100
DM 0150
DM 0200

DM 0150 | 0010 [bmo100 | 0100 |
DM 0151 | 0005 ‘

DM 0152 | 0050

DM 0153 | 0019

[DM o200 | 0512 |

239

Data Conversion Section 5-18

5-18-13 COLUMN TO LINE - LINE(063)

Operand Data Areas

Ladder Symbols S: First word of 16 word source set
IR, SR, AR, DM, EM, HR, TC, LR
— LINE(063) — @LINE(063)
C: Column bit designator (BCD)
S S
IR, SR, AR, DM, EM, HR, TC, LR, #
c c D: Destination word
D D IR, SR, AR, DM, EM, HR, TC, LR
Limitations S and S+15 must be in the same data area.

C must be between #0000 and #0015.

LINE(063) is an expansion instruction. A Programming Device can be used to
reassign function code 063 to another expansion instruction.

Description When the execution condition is OFF, LINE(063) is not executed. When the exe-
cution condition is ON, LINE(063) copies bit column C from the 16-word set (S to
S+15) to the 16 bits of word D (00 to 15).

Bit ¢ Bit
15 l 00
S o[o|ofo]1]1]1]o]o[o[1]o[o]o]0]1
S+1 |1|1]|o|1|o|o|1|o|O|1[1|1|0|O|O]1
S+2 |o|ojo|1|1]|o|1|1|o|o[1|0|O|1]|1]1
S+3 [1]|o|ojo|o|o|t1|[1|o|oO|O|O|1]|1]1
Ss+15|0]1[1[1]o]o]o[1[1]o]0]o[1]0]1]0] Bit Bit
15 00
= D o] - - - [o[i[1]1]
Flags ER: The column bit designator C is not BCD, or it is specifying a non-existent

bit (i.e., bit specification must be between 00 and 15).

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the content of D is zero; otherwise OFF.

Example The following example shows how to use LINE(063) to move bit column 07 from
the set (IR 100 to IR 115) to DM 0100.

00000 :
_| : LINE(063) Address | Instruction Operands

00000 | LD 00000
00001 | LINE(063)

100

#0007

100
#0007
DM 0100

DM 0100

240

Data Conversion Section 5-18

5-18-14 LINE TO COLUMN — COLM(064)

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, EM, HR, TC, LR
—1 COLM(064) —1 @COLM(064)

D: First word of the destination set
S S

IR, AR, DM, EM, HR, TC, LR, SR
D D C: Column bit designator (BCD)
C C IR, SR, AR, DM, EM, HR, TC, LR, #

Limitations D and D+15 must be in the same data area.
C must be between #0000 and #0015.
COLM(064) is an expansion instruction. A Programming Device can be used to
reassign function code 064 to another expansion instruction.

Description When the execution condition is OFF, COLM(064) is not executed. When the
execution condition is ON, COLM(064) copies the 16 bits of word S (00 to 15) to
the column of bits, C, of the 16-word set (D to D+15).

Bit Bit
15 00
s [ERIEIED
Bit C Bit
15 ‘ 00
D ojofofo|1|1|1|ofo|o[1]0f0|O|O]1
D+1 [t1|1|o|1]|o|o|1|o|o|1[1[1|0]|O]|O]1
D+2 |ofofo|1|1|0o[1[1]|0|O[1[O|O|1]|1]1
D+3 [1|ofo|ojo|o[1|1]|o]of[O(O|O[1]1]1
D+15 [0[1]1[1]ofofo[1]1]o]o]o[r]o[1]o]
Flags ER: The bit designator C is not BCD, or it is specifying a non-existent bit (i.e.,
bit specification must be between 00 and 15).
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.
EQ: ON when the content of S is zero; otherwise OFF.
Example The following example shows how to use COLM(064) to move the contents of
word DM 0100 (00 to 15) to bit column 15 of the set (DM 0200 to DM 0215).
00000 N
I COLM(064) Address | Instruction Operands

DM 0100 00000 | LD 00000

DM 0200 00001 | COLM(064)
#0015 DM 0100
DM 0200
#0015

241

Data Conversion

Section 5-18

5-18-15 2°S COMPLEMENT — NEG(160)

Ladder Symbols Operand Data Areas
—1 NEG(160) —1 @NEG(160) S: Source word
S S IR, SR, AR, DM, EM, HR, TC, LR, #
R R R: Result word
IR, SR, AR, DM, EM, HR, LR

Limitations

Description

Note

Flags

Example

242

NEG(160) is an expansion instruction. A Programming Device can be used to
reassign function code 160 to another expansion instruction.

Converts the four-digit hexadecimal content of the source word (S) to its 2’s
complement and outputs the result to the result word (R). This operation is effec-
tively the same as subtracting S from 0000 and outputting the result to R.

If the content of S is 0000, the content of R will also be 0000 after execution, and
EQ (SR 25506) will be turned ON.

If the content of S is 8000, the content of R will also be 8000 after execution, and
UF (SR 25405) will be turned ON.

Refer to page 30 for details on 16-bit signed binary data.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the content of S is 0000; otherwise OFF.
UF: ON when the content of S is 8000; otherwise OFF.
N: ON when bit 15 of R is set to 1; otherwise OFF.

The following example shows how to use NEG(160) to find the 2’s complement
of the hexadecimal value 001F and output the result to DM 0020.

00000 -
} NEG(160) Address | Instruction Operands
#001F 00000 LD 00000
DM 0020 00001 NEG(160)
#001F
DM 0020
#0000
— #001F

#FFE1 <+— Qutput to DM 0020.

Data Conversion

Section 5-18

5-18-16 DOUBLE 2’S COMPLEMENT - NEGL(161)

Limitations

Description

Flags

Example

Ladder Symbols
Operand Data Areas
NEGL(161) —1 @NEGL(161) S: First source word
S S IR, SR, AR, DM, EM, HR, TC, LR
R R R: First result word
- IR, SR, AR, DM, EM, HR, LR

Note

S and S+1 must be in the same data area, as must R and R+1.
NEGL(161) is an expansion instruction. A Programming Device can be used to
reassign function code 161 to another expansion instruction.

Converts the eight-digit hexadecimal content of the source words (S and S+1) to
its 2’s complement and outputs the result to the result words (R and R+1). This
operation is effectively the same as subtracting the eight-digit content S and S+1
from $0000 0000 and outputting the result to R and R+1.

If the content of S is 0000 0000, the content of R will also be 0000 0000 after
execution and EQ (SR 25506) will be turned ON.

If the content of S is 8000 0000, the content of R will also be 8000 0000 after
execution and UF (SR 25405) will be turned ON.

Refer to page 30 for details on 32-bit signed binary data.

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the content of S+1, S is 0000 0000; otherwise OFF.

UF: ON when the content of S+1, S is 8000 0000; otherwise OFF.

N: ON when bit 15 of R+1 is set to 1; otherwise OFF.

The following example shows how to use NEGL(161) to find the 2's complement

of the hexadecimal value in LR 21, LR 20 (001F FFFF) and output the result to
DM 0021, DM 0020.

00000
I

I NEGL(161) Address | Instruction Operands
LR20 00000 | LD 00000
DM 0020 00001 | NEGL(161)
LR 20
DM 0020
0000 0000

S+1: LR 21 S:LR 20

—_ 001F FFFF

R+1: DM 0021 R: DM 0020

FFEO 0001

243

Symbol Math Instructions Section 5-19

5-19 Symbol Math Instructions

The Symbol Math Instructions perform arithmetic operations on BCD, binary, or
floating-point data.

5-19-1 Binary Addition: +(400)/+L(401)/+C(402)/+CL(403)
SIGNED BINARY ADD WITHOUT CARRY: +(400)

Ladder Symbols Operand Data Areas
+(400) @+(400) Au: Augend word
IR, SR, AR, DM, EM, HR, TC, LR, #
Au Au
Ad: Addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: Result word
IR, SR, AR, DM, EM, HR, LR

DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)

Ladder Symbols Operand Data Areas
st
+L(401) @-+L(401) Au: 18t augend word
IR, SR, AR, DM, EM, HR, TC, LR
Au Au
Ad: 15t addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR
R R
R: 18t result word
IR, SR, AR, DM, EM, HR, LR
SIGNED BINARY ADD WITH CARRY: +C(402)
Ladder Symbols Operand Data Areas
+C(402) @+C(402) Au: Augend word
IR, SR, AR, DM, EM, HR, TC, LR, #
Au Au
Ad: Addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: Result word
IR, SR, AR, DM, EM, HR, LR

DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)

244

Ladder Symbols Operand Data Areas
- qst
+CL(403) @+CL(403) Au: 1% augend word
IR, SR, AR, DM, EM, HR, TC, LR
Au Au
Ad: 15t addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR
R R
R: 1St result word
IR, SR, AR, DM, EM, HR, LR

Symbol Math Instructions

Section 5-19

Description

Flags

SIGNED BINARY ADD WITHOUT CARRY

When the execution condition is OFF, +(400) is not executed. When the execu-
tion condition is ON, +(400) adds the contents of Au and Ad and places the result
in R. CY will be set if the result is greater than FFFF.

.]
22| G

DOUBLE SIGNED BINARY ADD WITHOUT CARRY

When the execution condition is OFF, +L(401) is not executed. When the execu-
tion condition is ON, +L(401) adds the 8-digit contents of Au+1 and Au and the
8-digit contents of Ad+1 and Ad, and places the result in R and R + 1. CY will be
set if the result is greater than FFFF FFFF.

| Au +1 || Au |
+ [Ad+1 | [Ad |
[cy][R+1 || R |

SIGNED BINARY ADD WITH CARRY

When the execution condition is OFF, +C(402) is not executed. When the execu-
tion condition is ON, +C(402) adds the contents of Au, Ad, and CY and places
the result in R. CY will be set if the result is greater than FFFF.

'
"]

DOUBLE SIGNED BINARY ADD WITH CARRY
When the execution condition is OFF, +CL(403) is not executed. When the ex-
ecution condition is ON, +CL(403) adds the 8-digit contents of Au+1, Au, the
8-digit contents of Ad+1 and Ad, and CY, and places the resultin Rand R + 1. CY
will be set if the result is greater than FFFF FFFF.

[Auvt || Au |

[Ad+1 || Ad |

+
[cy || R+t | [R |

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: The result is greater than FFFF or FFFF FFFF.
EQ: Theresultis 0.

OF: Au (Au +1) and Ad (Ad +1) are both positive numbers and the result is
negative.

UF: Au (Au +1) and Ad (Ad +1) are both negative numbers and the result is
positive.

245

Symbol Math Instructions Section 5-19

N: Shows the status of bit 15 of R or R+1.

Using Signed Binary Addition Instructions
The range for signed data is —32,768 to 32,767 in decimal (—2,147,483,648 to
2,147,483,647 for “double” instructions), and 8000 to FFFF and 0000 to 7FFF in
hexadecimal (8000 0000 to FFFF FFFF and 0000 0000 to 7FFF FFFF for
“double” instructions).
Negative numbers are expressed as 2’s complements. If the result of the addi-
tion is within the range of 8000 to FFFF, it represents a signed negative number
and the Negative Flag (SR 25402) turns ON.
When Au and Ad are both positive numbers and the addition result is negative,
the Overflow Flag (SR 25404) turns ON. When Au and Ad are both negative
numbers and the addition result is positive, the Underflow Flag (SR 25405) turns
ON. If a addition result in a carry, the Carry Flag turns ON.
The range for unsigned binary data is 0000 to FFFF (0000 0000 to FFFF FFFF
for “double” instructions), so the decimal range would be 0 to 65,535 (0 to
4,294,967,295).

5-19-2 BCD Addition: +B(404)/ +BL(405)/+BC(406)/+BCL(407)
BCD ADD WITHOUT CARRY: +B(404)

Ladder Symbols Operand Data Areas
+B(404) @+B(404) Au: Augend word
IR, SR, AR, DM, EM, HR, TC, LR, #
Au Au
Ad: Addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: Result word
IR, SR, AR, DM, EM, HR, LR

DOUBLE BCD ADD WITHOUT CARRY: +BL(405)

Ladder Symbols Operand Data Areas
- qst
+BL(405) @+BL(405) Au: 1% augend word
IR, SR, AR, DM, EM, HR, TC, LR
Au Au
Ad: 15t addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR
R R
R: 1St result word
IR, SR, AR, DM, EM, HR, LR
BCD ADD WITH CARRY: +BC(406)
Ladder Symbols Operand Data Areas
+BC(406) @+BC(406) Au: Augend word
IR, SR, AR, DM, EM, HR, TC, LR, #
Au Au
Ad: Addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: Result word
IR, SR, AR, DM, EM, HR, LR

246

Symbol Math Instructions

Section 5-19

DOUBLE BCD ADD WITH CARRY: +BCL(407)

Description

Ladder Symbols Operand Data Areas
- qst
+BCL(407) | — @+BCL(407) Au: 1% augend word
IR, SR, AR, DM, EM, HR, TC, LR
Au Au
Ad: 15t addend word
Ad Ad
IR, SR, AR, DM, EM, HR, TC, LR
R R
R: 1St result word
IR, SR, AR, DM, EM, HR, LR
BCD ADD WITHOUT CARRY

When the execution condition is OFF, +B(404) is not executed. When the execu-
tion condition is ON, +B(404) adds the contents of Au and Ad and places the re-
sult in R. CY will be set if the result is greater than 9999.

.]
(][r]

DOUBLE BCD ADD WITHOUT CARRY

When the execution condition is OFF, +BL(405) is not executed. When the ex-
ecution condition is ON, +BL(405) adds the 8-digit contents of Au+1 and Au and
the 8-digit contents of Ad+1 and Ad, and places the resultin R and R + 1. CY will
be set if the result is greater than 9999 9999.

[Auet || A |
+ [[Ad+1 | [Ad |
[cy][R+t || R |

BCD ADD WITH CARRY

When the execution condition is OFF, +BC(406) is not executed. When the ex-
ecution condition is ON, +BC(406) adds the contents of Au, Ad, and CY and
places the result in R. CY will be set if the result is greater than 9999.

.
Lev][R |

DOUBLE BCD ADD WITH CARRY

When the execution condition is OFF, +BCL(407) is not executed. When the ex-
ecution condition is ON, +BCL(407) adds the 8-digit contents of Au+1, Au, the
8-digit contents of Ad+1 and Ad, and CY, and places the resultin Rand R + 1. CY
will be set if the result is greater than 9999 9999.

247

Symbol Math Instructions

Precautions

Flags

Example

00000

Section 5-19
[Au+t || Au |
[Ad+1 || Ad |
+
[cy || R+t [[R |

Au and Ad (or Au, Au+1, Ad, and Ad+1) must be BCD. If any other data is used,
the Error Flag (SR 25503) will turn ON and the instruction will not be executed.

ER: Au and Ad (or Au, Au+1, Ad, and Ad+1) are not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: The result exceeds the digits.
EQ: The result after the addition is all zeros.

+BL Operation

When IR 00000 is ON in the following example, the contents of DM 0101 and DM
0100 are added to the content of DM 0111 and DM 0110, and the result is output
in eight-digit BCD to DM 0121 and DM 0120.

+BCL Operation

When IR 00001 is ON in the following example, the contents of DM 0201 and DM
0200 are added to the content of DM 0211 and DM 0210, and the result including
the carry is output in eight-digit BCD to DM 0221 and DM 0220.

00001
I

+BL(405) Address | Instruction | Operands

DM 0100 00000 |LD 00000

DM 0110 00001 | +BL(405)

DM 0120 DM 0100
DM 0110

+BCL(407) DM 0120

DM 0200 00002 LD 00001

DM 0210 00003 | +BCL(407)

DM 0220 DM 0200
DM 0210
DM 0220

5-19-3 Binary Subtraction: —(410)/ —L(411)/~C(412)/~CL(413)

SIGNED BINARY SUBTRACT WITHOUT CARRY: —(410)

248

Ladder Symbols Operand Data Areas
Mi: Minuend word
—(410) — @-(410)

IR, SR, AR, DM, EM, HR, TC, LR, #

Mi Mi
Su: Subtrahend word

Su Su

IR, SR, AR, DM, EM, HR, TC, LR, #
R R

R: Result word

IR, SR, AR, DM, EM, HR, LR

Symbol Math Instructions

Section 5-19

DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: -L(411)

SIGNED BINARY SUBTRACT WITH CARRY: —-C(412)

DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: —-CL(413)

Description

Ladder Symbols Operand Data Areas
Mi: 15t minuend word
—L(411) — @-L@41)
IR, SR, AR, DM, EM, HR, TC, LR
Mi Mi
Su: 18t subtrahend word
Su Su
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 18t result word
IR, SR, AR, DM, EM, HR, LR
Ladder Symbols Operand Data Areas
Mi: Minuend word
—C(412) — @-C(412)
IR, SR, AR, DM, EM, HR, TC, LR, #
Mi Mi
Su: Subtrahend word
Su Su
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: Result word
IR, SR, AR, DM, EM, HR, LR

Ladder Symbols Operand Data Areas
Mi: 15t minuend word
—CL(413) — @-CL(413)
IR, SR, AR, DM, EM, HR, TC, LR
Mi Mi
Su: 15t subtrahend word
Su Su
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 1St result word
IR, SR, AR, DM, EM, HR, LR

SIGNED BINARY SUBTRACT WITHOUT CARRY

When the execution condition is OFF, —(410) is not executed. When the execu-
tion condition is ON, —(410) subtracts the contents of Su from Mi and places the
result in R. If the subtraction resulted in a borrow, CY is set. To obtain the true
answer when the result is negative, the 2’'s complement placed in R must be sub-
tracted from 0000.

Mi |[—|Su| = |CY R

249

Symbol Math Instructions

Section 5-19

Flags

DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY

When the execution condition is OFF, —L(411) is not executed. When the execu-
tion condition is ON, —L(411) subtracts the 8-digit value in Su and Su+1 from the
8-digit value in Mi and Mi+1, and places the result in R and R+1. If the subtraction
resulted in a borrow, CY is set.

Mi + 1 Mi
- Su + 1 Su
cY R+1 R

SIGNED BINARY SUBTRACT WITH CARRY

When the execution condition is OFF, —C(412) is not executed. When the execu-
tion condition is ON, —C(412) subtracts the contents of Su and CY from Mi and
places the result in R. If the subtraction resulted in a borrow, CY is set.

Mi |-|Su|-|CY|— |CY||R

DOUBLE SIGNED BINARY SUBTRACT WITH CARRY

When the execution condition is OFF, —CL(413) is not executed. When the ex-
ecution condition is ON, —CL(413) subtracts CY and the 8-digit value in Su and
Su+1 from the 8-digit value in Mi and Mi+1, and places the result in R and R+1. If
the subtraction resulted in a borrow, CY is set.

Mi + 1 Mi
Su + 1 Su
- CcY
cY R+1 R

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: The subtraction resulted in a carry.

EQ: The contents of word R (or word R and R+1 for “double” instructions)
after the subtraction is all zeros

OF: Mi is a positive number, Su is negative, and the subtraction result is neg-

ative.

UF: Mi is a negative number, Su is positive, and the subtraction result is pos-
itive.

N: The leftmost bit (MSB) of word R (or word R+1 for “double” instructions)

after the subtraction is “1.”

Using SIGNED BINARY SUBTRACT Instructions

250

The range for signed data is —32,768 to 32,767 in decimal (—2,147,483,648 to
2,147,483,647 for “double” instructions), and 8000 to FFFF and 0000 to 7FFF in
hexadecimal (8000 0000 to FFFF FFFF and 0000 0000 to 7FFF FFFF for
“double” instructions).

Negative numbers are expressed as 2’s complements. If the result of the sub-
traction is within the range of 8000 to FFFF, it represents a signed negative num-
ber and the Negative Flag (SR 25402) turns ON.

Symbol Math Instructions

Section 5-19

Numeric Example 1

Numeric Example 2

Note

Programming Example 1

When Mi is a positive number, Su is negative and the subtraction result is nega-
tive, the Overflow Flag (SR 25404) turns ON. When Mi is a negative number, Su
is positive, and the subtraction result is positive, the Underflow Flag (SR 25405)
turns ON. If a subtraction result in a borrow, the Carry Flag turns ON.

The range for unsigned binary data is 0000 to FFFF (0000 0000 to FFFF FFFF
for “double” instructions), so the decimal range would be 0 to 65,535 (0 to
4,294,967,295). When data is unsigned, the Carry Flag turning ON indicates
that the subtraction result is negative. The result is expressed as 2’s comple-
ment, so in order to find the true answer, the 2's complement must be subtracted
from 0.

Signed data Unsigned data
FFFFy > -1 65535
-) 0001y > o . -) 1
FFFEy > —2 (Note 1) 65534 (Note 2)
I: Negative Flag ON
Carry Flag OFF
Signed data Unsigned data
FFFDy > -3 65533
-) FFFFy > A -) 65535
—2 (Note 1) —2 (Note 3)

FFFEy >
I: Negative Flag ON

Carry Flag ON

1. Because the Negative Flag is ON, the result (FFFE) is a negative number
(2’s complement) and is expressed as —2.

2. The Carry Flag is OFF and the result (FFFE) is an unsigned positive number
(65,534).

3. The Carry Flag is ON so the result (FFFE) is an unsigned negative number
(2’'s complement) and becomes —2 when converted.

—-L Operation

When IR 00000 is ON in the following example, the content of DM 0111 and
DM 0110 is subtracted from the content of DM 0101 and DM 0100, and the result
is output in eight-digit binary to DM 0121 and DM 0120. CY is set if the subtrac-
tion resulted in a borrow.

—CL Operation

When IR 00001 is ON in the following example, the content of DM 0211 and
DM 0210 is subtracted from the content of DM 0201 and DM 0200, and the result
is output in eight-digit binary to DM 0221 and DM 0220. CY is set if the subtrac-
tion resulted in a borrow.

251

Symbol Math Instructions

Section 5-19

00000

— !

—-L(411)

DM 0100

DM 0110

DM 0120

00001
I
|

—CL(413)

DM 0200

DM 0210

DM 0220

Program Example 2

Address | Instruction | Operands
00000 |LD 00000
00001 |-L(411)

DM 0100

DM 0110

DM 0120
00002 |[LD 00001
00003 |[-CL(413)

DM 0200

DM 0210

DM 0220

Example (unsigned data): 20F55A10 — BBA360E3 = —-97AE06D3.

In this example, the eight-digit binary value in IR 121 and IR 120 is subtracted
from the value in IR 201 and IR 200, and the result is output to eight-digit binary in
DM 0101 and DM 0100. If the result is negative, the instruction at (2) will be
executed, and the actual result will then be output to DM 0101 and DM 0100.

The Carry Flag (SR 25504) will be turned ON, so the actual number is
—97AE06D3. Because the content of DM 0101 and DM 0100 is negative, CY is
used to turn ON a self-holding bit that turns ON a bit indicating a negative value.

00002 (411)
L

| [-L 200 DM 0100]
SR 255
04 (CY) @ty
——p——{ -L Dbmoooo Dmot00 DMmot00]
SR 255
04 (CY) 02100
_| : O “~” display
02100
11
!
Subtraction at 1
Mi+1: IR 201 Mi: IR 200
|2 o[F[s [s]A[1]0]
Su+1: 1R 121 Su: IR 120
- [Bl8lals (el ogs

cYy R+1:DMO0101 R+1:DM 0100

HEER

EREDR

@
@

Address | Instruction | Operands
00000 (LD 00002
00001 |OUT TRO
00002 |-L(411)

200

120

DM 0100

00003 |[LD TRO

00004 |[AND SR 25504
00005 |[-L(411)

DM 0000

DM 0100

DM 0100

00006 |LD TRO

00007 |AND SR 25504

00008 |OR 02100

00009 |OUT 02100

The Carry Flag (SR 25504) is ON, so the result is subtracted from 0000 0000

(the contents of DM 0000 and DM 0001) to obtain the actual result.

252

Symbol Math Instructions Section 5-19

Subtraction at 2
Mi+1: DM 0001 Mi: DM 0000

(o[o[o[of [o]ofo]0]

Su+1: DM 0101 Su: DM 0100
- lelsls/1] [Flol20D

cY R+1: DM 0101 R+1: DM 0100

1] [el7lale] [o[6D

Final Subtraction Result

Mi+1:IR201 Mi: IR 200
L2l o[F[5] [s[A[1]0]

Su+1: DM 0101 Su: DM 0100
- lelsls/1] [Fol20D

CcYy R+1:DM 0101 R+1:DM 0100

1] [o[7]AlE [o]e[D]3

5-19-4 BCD Subtraction: —B(414)/ —=BL(415)/~BC(416)/~BCL(417)

BCD SUBTRACT WITHOUT CARRY: —-B(414)

Ladder Symbols Operand Data Areas
Mi: Minuend word
—1 -B(414) —1 @-B(414)

IR, SR, AR, DM, EM, HR, TC, LR, #

Mi Mi
Su: Subtrahend word

Su Su

IR, SR, AR, DM, EM, HR, TC, LR, #
R R

R: Result word
IR, SR, AR, DM, EM, HR, LR

DOUBLE BCD SUBTRACT WITHOUT CARRY: -BL(415)

Ladder Symbols Operand Data Areas
Mi: 15t minuend word
— -BL(415) — @-BL(415)
IR, SR, AR, DM, EM, HR, TC, LR
Mi Mi
Su: 15t subtrahend word
Su Su
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 1St result word
IR, SR, AR, DM, EM, HR, LR

253

Symbol Math Instructions

Section 5-19

BCD SUBTRACT WITH CARRY: —-BC(416)

Ladder Symbols Operand Data Areas
Mi: Minuend word
-BC(416) —1 @-BC(416)

IR, SR, AR, DM, EM, HR, TC, LR, #

Mi Mi
Su: Subtrahend word

Su Su

IR, SR, AR, DM, EM, HR, TC, LR, #
R R R: Result word

IR, SR, AR, DM, EM, HR, LR

DOUBLE BCD SUBTRACT WITH CARRY: -BCL(417)

Description

254

Ladder Symbols Operand Data Areas
Mi: 15t minuend word
-BCL(417) — @-BCL(417)
IR, SR, AR, DM, EM, HR, TC, LR
Mi Mi
Su: 15t subtrahend word
Su Su
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 15t result word
IR, SR, AR, DM, EM, HR, LR

BCD SUBTRACT WITHOUT CARRY

When the execution condition is OFF, —B(414) is not executed. When the execu-
tion condition is ON, —B(414) subtracts the BCD contents of Su from Mi, and
places the resultin R. If the result is negative, CY is set and the 10’s complement
of the actual result is placed in R. To convert the 10’s complement to the true
result, subtract the content of R from 0000.

Mi | - |Su —» |CY R

DOUBLE BCD SUBTRACT WITHOUT CARRY

When the execution condition is OFF, —BL(415) is not executed. When the ex-
ecution condition is ON, —BL(415) subtracts the 8-digit BCD content of Su and
Su+1 from the 8-digit BCD content in Mi and Mi+1, and places the result in R and
R+1. If the result is negative, CY is set and the 10’s complement of the actual
result is placed in R. To convert the 10’s complement to the true result, subtract
the content of R from 0000 0000.

Mi + 1 Mi
- Su+1 Su
CcY R+1 R

BCD SUBTRACT WITH CARRY

When the execution condition is OFF, —-BC(416) is not executed. When the ex-
ecution condition is ON, —BC(416) subtracts the BCD contents of Su and CY
from Mi, and places the result in R. If the result is negative, CY is set and the 10’s

Symbol Math Instructions

Section 5-19

Precautions

Flags

Example

00000
L

complement of the actual result is placed in R. To convert the 10’s complement
to the true result, subtract the content of R from 0000.

Mi |- |Su|[-|CY|—|CY R

DOUBLE BCD SUBTRACT WITH CARRY

When the execution condition is OFF, -BCL(417) is not executed. When the ex-
ecution condition is ON, —-BCL(417) subtracts CY and the 8-digit BCD content of
Su and Su+1 from the 8-digit BCD content in Mi and Mi+1, and places the result
in R and R+1. If the result is negative, CY is set and the 10’s complement of the
actual result is placed in R. To convert the 10’s complement to the true result,
subtract the content of R from 0000 0000.

Mi + 1 Mi
Su + 1 Su
- cY
cY R+1 R

Mi and Su (or Mi, Mi+1, Su, and Su+1) must be BCD. If any other data is used,
the Error Flag (SR 25503) will turn ON and the instruction will not be executed.

ER: Mi and Su (or Mi, Mi+1, Su, and Su+1) are not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: The result exceeds the digits.
EQ: The result after the subtraction is all zeros.

—BL Operation

When IR 00000 is ON in the following example, the content of DM 0111 and DM
0110 is subtracted from the content of DM 0101 and DM 0100, and the result is
output in eight-digit BCD to DM 0121 and DM 0120. CY is set if the result is nega-
tive

—-BCL Operation

When IR 00001 is ON in the following example, the content of DM 0211 and DM
0210 are subtracted from the content of DM 0201 and DM 0200, and the result
including the carry is output in eight-digit BCD to DM 0221 and DM 0220. CY is
set if the result is negative

00001
L

Program Example

_BL(415) Address | Instruction | Operands
DM 0100 00000 (LD 00000
DM 0110 00001 [-BL(415)
DM 0120 DM 0100

DM 0110
-BCL(417) DM 0120
DM 0200 00002 |LD 00001
DM 0210 00003 |[-BCL(417)
DM 0220 DM 0200

DM 0210

DM 0220

Example: 9,583,960 — 17,072,641 = —7,488,681.
In this example, the eight-digit BCD content of IR 121 and IR 120 is subtracted

255

Symbol Math Instructions

Section 5-19

from the content of IR 201 and IR 200, and the result is output in eight-digit BCD
to DM 0101 and DM 0100. The result is negative, so the instruction at (2) will be
executed, and the true value will then be output to DM 0101 and DM 0100.

The Carry Flag (SR 25504) will be turned ON, so the actual number is
—7,488,681. Because the content of DM 0101 and DM 0100 is negative, CY is
used to turn ON a self-holding bit that turns ON a bit indicating a negative value.

00002 (415)
L r

| [-BL 200 120 DM 0100

SR 255
04 (CY) (@15)

——p——{ -8L Dmoo00 DMmot00 DMOt00]

SR 255
04 (CY) 02100

— | O “ display

02100
|1
!

Subtraction at 1

Mi+1:IR201 Mi: IR 200
[o[o[s[8 [3]e]6]0]

Su+1: IR 121 Su: IR 120

- Lil7lo7] [2]e[4]1]

09583960 + (100000000 — 17072641)
CcY R+1: DM 0101 R+1: DM 0100

1] [of2] s[1] [1]s]1]9]

@
@

Address | Instruction | Operands
00000 (LD 00002
00001 |[OUT TRO
00002 [-BL(415)

200

120

DM 0100

00003 (LD TRO

00004 | AND SR 25504
00005 |[-BL(415)

DM 0000

DM 0100

DM 0100

00006 (LD TRO

00007 [AND SR 25504

00008 |[OR 02100

00009 |[OUT 02100

The Carry Flag (SR 25504) is ON, so the result is subtracted from 0000 0000.

Subtraction at 2
Mi+1: DM 0001 Mi: DM 0000

(o[ofo[o] [ofofo]0]

Su+1: DM 0101 Su: DM 0100
- lol2|g1] [1]3[1]s]

00000000 + (100000000 — 92511319)
CY R+1: DM 0101 R+1: DM 0100

(1] [o[7] 4[8] [8[e]8]1]

256

Symbol Math Instructions Section 5-19

Final Subtraction Result

Mi+1:IR201 Mi: IR 200
L2l o[F[5] [s[A[1]0]

Su+1: DM 0101 Su: DM 0100
- lelsls/1] [Fol20D

CcY R+1:DM 0101 R+1:DM 0100

Lof 7[4[8] [g] 68| 1]

5-19-5 Binary Multiplication: *(420)/ *L(421)/+U(422)/+UL(423)

SIGNED BINARY MULTIPLY: *(420)

Ladder Symbols Operand Data Areas
Md: Multiplicand word
I *(420) — @%*(420)
IR, SR, AR, DM, EM, HR, TC, LR, #
Md Md
Mr: Multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: 15t result word
IR, SR, AR, DM, EM, HR, LR

DOUBLE SIGNED BINARY MULTIPLY: *L(421)

Ladder Symbols Operand Data Areas
Md: 1St multiplicand word
— *L(421) — @=L(421)
IR, SR, AR, DM, EM, HR, TC, LR, #
Md Md
Mr: 15t multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: 18t result word
IR, SR, AR, DM, EM, HR, LR

UNSIGNED BINARY MULTIPLY: *U(422)

Ladder Symbols Operand Data Areas
Md: Multiplicand word
—1 *U(422) — @*U(422)
IR, SR, AR, DM, EM, HR, TC, LR, #
Md Md
Mr: Multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R R: 15t result word
IR, SR, AR, DM, EM, HR, LR

257

Symbol Math Instructions Section 5-19

DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)

Ladder Symbols Operand Data Areas
Md: 15t multiplicand word
— *UL(423) — @*UL(423)
IR, SR, AR, DM, EM, HR, TC, LR
Md Md
Mr: 1t multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 1St result word
IR, SR, AR, DM, EM, HR, LR
Description SIGNED BINARY MULTIPLY

When the execution condition is OFF, *(420) is not executed. When the execu-
tion condition is ON, *(420) multiplies the signed content of Md by the signed
content of Mr, places the rightmost four digits of the result in R, and places the
leftmost four digits in R+1.

DOUBLE SIGNED BINARY MULTIPLY

When the execution condition is OFF, *L(421) is not executed. When the execu-
tion condition is ON, *L(421) multiplies the signed 8-digit content of Md and
Md+1 by the signed content of Mr and Mr+1, and places the result in R to R+3.

Md + 1 Md
X Mr + 1 Mr
R+3 R+2 R+1 R

UNSIGNED BINARY MULTIPLY

When the execution condition is OFF, *U(422) is not executed. When the execu-
tion condition is ON, *U(422) multiplies the unsigned content of Md by the un-
signed content of Mr, places the rightmost four digits of the result in R, and
places the leftmost four digits in R+1.

DOUBLE UNSIGNED BINARY MULTIPLY
When the execution condition is OFF, *UL(423) is not executed. When the ex-
ecution condition is ON, *UL(423) multiplies the unsigned 8-digit content of Md

258

Symbol Math Instructions

Section 5-19

Flags

Example

00000
I

and Md+1 by the unsigned content of Mr and Mr+1, and places the resultin R to
R+3.

Md + 1 Md
X Mr + 1 Mr
R+3 R+2 R+1 R

ER: The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: The multiplication result is all zeroes.

N: The leftmost bit (MSB) of word R+1 (or word R+3 for “double” instruc-
tions) after the multiplication is “1.”

*L. Operation

When IR 00000 is ON in the following example, the content of DM 0101 and DM
0100 are multiplied by the content of DM 0111 and DM 0110, in eight-digit binary
with sign, and the result is output to DM 0123 through DM 0120.

*UL Operation

When IR 00001 is ON in the following example, the content of DM 0201 and DM
0200 are multiplied by the content of DM 0211 and DM 0210, in eight-digit binary
without sign, and the result is output to DM 0223 through DM 0220.

00001
I

5-19-6 BCD Multiplication: *B(424)/ *BL(425)

BCD MULTIPLY: *B(424)

“Ld21) Address | Instruction | Operands
DM 0100 00000 (LD 00000
OV o110 00001 | *L(421)
DM 0120 DM 0100
DM 0110
*UL(423) DM 0120
DM 0200 00002 (LD 00001
DM 0210 00003 | *UL(423)
DM 0220 DM 0200
DM 0210
DM 0220
Ladder Symbols Operand Data Areas
Md: Multiplicand word
*B(424) — @*B(424)
IR, SR, AR, DM, EM, HR, TC, LR, #
Md Md
Mr: Multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R
R: 15t result word
IR, SR, AR, DM, EM, HR, LR

259

Symbol Math Instructions Section 5-19

DOUBLE BCD MULTIPLY: *BL(425)

Ladder Symbols Operand Data Areas
Md: 1St multiplicand word
— *BL(425) — @*BL(425)
IR, SR, AR, DM, EM, HR, TC, LR
Md Md
Mr: 15t multiplier word
Mr Mr
IR, SR, AR, DM, EM, HR, TC, LR
R R
R: 15t result word
IR, SR, AR, DM, EM, HR, LR
Description BCD MULTIPLY

When the execution condition is OFF, *B(424) is not executed. When the execu-
tion condition is ON, *B(424) multiplies the BCD content of Md by the BCD con-
tent of Mr, and places the result in R and R+1.

X

r

\ R +1 \ R \

DOUBLE BCD MULTIPLY

When the execution condition is OFF, *BL(425) is not executed. When the ex-
ecution condition is ON, *BL(425) multiplies the 8-digit BCD content of Md and
Md+1 by the BCD content of Mr and Mr+1, and places the result in R to R+3.

Md + 1 Md
X Mr + 1 Mr
R+3 R+2 R+1 R
Precautions Md (Md+1) and Mr (Mr+1) must be BCD. If any other data is used, the Error Flag

(SR 25503) will turn ON and the instruction will not be executed.

Flags ER: Content of Md (Md+1) or Mr (Mr+1) is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: The multiplication result is all zeroes.

Example *BL Operation
When IR 00000 is ON in the following example, the content of DM 0101 and
DM 0100 is multiplied by the content of DM 0111 and DM 0110, in eight-digit
BCD, and the result is output to DM 0123 through DM 0120.

ooo=00 +BL(425) Address | Instruction | Operands
DM 0100 00000 |LD 00000
DM 0110 00001 | *BL(425)
DM 0120 DM 0100
DM 0110
DM 0120

260

Symbol Math Instructions

Section 5-19

5-19-7 Binary Division: /(430)/ /L(431)//U(432)//UL(433)

SIGNED BINARY DIVIDE: /(430)

Ladder Symbols Operand Data Areas
Dd: Dividend word
— /(430) @/(430)
IR, SR, AR, DM, EM, HR, TC, LR, #
Dd Dd
Dr: Divisor word
Dr Dr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R R: 18t result word
IR, SR, AR, DM, EM, HR, LR
DOUBLE SIGNED BINARY DIVIDE: /L(431)
Ladder Symbols Operand Data Areas
Dd: 1st dividend word
— /L(431) @/L(431)
IR, SR, AR, DM, EM, HR, TC, LR
Dd Dd
Dr: 15t divisor word
Dr Dr
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 1St result word
IR, SR, AR, DM, EM, HR, LR
UNSIGNED BINARY DIVIDE: /U(432)
Ladder Symbols Operand Data Areas
Dd: Dividend word
— /U(432) @/u(432)
IR, SR, AR, DM, EM, HR, TC, LR, #
Dd Dd
Dr: Divisor word
Dr Dr
IR, SR, AR, DM, EM, HR, TC, LR, #
R R R: 15t result word
IR, SR, AR, DM, EM, HR, LR
DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
Ladder Symbols Operand Data Areas
Dd: 15t dividend word
— /UL@433) @/UL(433)
IR, SR, AR, DM, EM, HR, TC, LR
Dd Dd
Dr: 15t divisor word
Dr Dr
IR, SR, AR, DM, EM, HR, TC, LR
R R R: 1St result word
IR, SR, AR, DM, EM, HR, LR
Description SIGNED BINARY DIVIDE

When the execution condition is OFF, /(430) is not executed. When the execu-
tion condition is ON, /(430) divides the signed binary content of Dd by the signed

261

Symbol Math Instructions Section 5-19

binary content of Dr and the result is placed in R and R+1: the quotient in R, the
remainder in R+1.

Quotient Remainder

| R | R+1

o])]

DOUBLE SIGNED BINARY DIVIDE

When the execution condition is OFF, /L(431) is not executed. When the execu-
tion condition is ON, /L(431) divides the signed 8-digit content of Dd and Dd+1 by
the signed content of Dr and Dr+1 and the result is placed in R to R+3: the quo-
tientin R and R+1, and the remainder in R+2 and R+3.

Remainder Quotient

| R+3 | R+2 || R+1 | R |

| Drs+1 | Dr |>| Dd+1 | Dd |

UNSIGNED BINARY DIVIDE

When the execution condition is OFF, /U(432) is not executed. When the execu-
tion condition is ON, /U(432) divides the unsigned content of Dd by the unsigned
content of Dr and the result is placed in R and R+1: the quotient in R, the remain-
derin R+1.

Quotient Remainder

| R | R+t

o])]

DOUBLE UNSIGNED BINARY DIVIDE

When the execution condition is OFF, /UL(433) is not executed. When the ex-
ecution condition is ON, /UL(433) divides the 8-digit unsigned content of Dd and
Dd+1 by the unsigned content of Dr and Dr+1 and the result is placed in R to
R+3: the quotient in R and R+1, and the remainder in R+2 and R+3.

Remainder Quotient
| Rs3 | R+ || R+t | R |
| Dr+ | or | > | bdt | Dd |
Precautions Dr (or Dr and Dr+1) must not be all zeros. Instructions will not be executed when

ER (Error Flag) is ON.

Flags ER: Dr (or Dr and Dr+1) is all zeroes.
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.
EQ: The division result is all zeroes in the quotient.

N: The leftmost bit (MSB) of word R (or word R+1 for “double” instructions)
after the division is “1.”

262

Symbol Math Instructions

Section 5-19

Example /L Operation

When IR 00000 is ON in the following example, the signed content of DM 0101
and DM 0100 is divided by the signed content of DM 0111 and DM 0110, in eight-
digit binary. When the result is obtained, the quotient is output to DM 0121 and
DM 0120, and the remainder is output to DM 0123 and DM 0122.
/UL Operation
When IR 00001 is ON in the following example, the unsigned content of DM
0201 and DM 0200 is divided by the unsigned content of DM 0211 and DM 0210,
in eight-digit binary. When the result is obtained, the quotient is output to DM
0221 and DM 0220, and the remainder is output to DM 0223 and DM 0222.

00000
I
|

/L(431)

DM 0100

DM 0110

DM 0120

00001
I
|

/UL(433)

DM 0200

DM 0210

DM 0220

5-19-8 BCD Division: /B(434)/ /BL(435)

BCD DIVIDE: /B(434)

Address | Instruction | Operands
00000 (LD 00000
00001 | /L(431)
DM 0100
DM 0110
DM 0120
00002 (LD 00001
00003 |/UL(433)
DM 0200
DM 0210
DM 0220

Operand Data Areas

Dd: Dividend word

IR, SR, AR, DM, EM, HR, TC, LR, #

Dr: Divisor word

IR, SR, AR, DM, EM, HR, TC, LR, #

R: 18t result word

IR, SR, AR, DM, EM, HR, LR

Operand Data Areas

Dd: 1st dividend word

IR, SR, AR, DM, EM, HR, TC, LR

Dr: 1St divisor word

IR, SR, AR, DM, EM, HR, TC, LR

Ladder Symbols
— /B(434) — @/B(434)
Dd Dd
Dr Dr
R R
DOUBLE BCD DIVIDE: /BL(435)
Ladder Symbols
— /BL(435) — @/BL(435)
Dd Dd
Dr Dr
R R
Description BCD DIVIDE

R: 18t result word

IR, SR, AR, DM, EM, HR, LR

When the execution condition is OFF, /B(434) is not executed and the program
moves to the next instruction. When the execution condition is ON, the BCD con-

263

BCD Calculations Section 5-20

tent of Dd is divided by the BCD content of Dr and the result is placed in R and R +
1: the quotient in R and the remainder in R + 1.

Remainder Quotient

\ R+1 HR \

DOUBLE BCD DIVIDE

When the execution condition is OFF, /BL(435) is not executed. When the ex-
ecution condition is ON, the BCD 8-digit content of Dd and Dd+1 is divided by the
BCD content of Dr and Dr+1 and the result is placed in R to R+3: the quotient in R
and R+1, and the remainder in R+2 and R+3.

Remainder Quotient
| R+3 | Re2 | | R+1 | R |
R | or | > | Db+t | Dd |
Precautions Dd and Dr (or Dd, Dd+1, Dr, and Dr+1) must be BCD. If any other data is used,

the Error Flag (SR 25503) will turn ON and the instruction will not be executed.

Flags ER: Dd and Dr (or Dd, Dd+1, Dr, and Dr+1) are not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: The division result is all zeroes.

Example /BL Operation
When IR 00001 is ON in the following example, the content of DM 0201 and DM
0200 is divided by the content of DM 0211 and DM 0210, in eight-digit BCD.
When the result is obtained, the quotient is output to DM 0221 and DM 0220, and
the remainder is output to DM 0223 and DM 0222.

s
DM 0200
o 00001 | /BL(435)
DM 0220 DM 0200
DM 0210
DM 0220

5-20 BCD Calculations

The BCD calculation instructions — INC(038), DEC(039), ADD(030),
ADDL(054), SUB(031), SUBL(055), MUL(032), MULL(056), DIV(033),
DIVL(057), FDIV(079), and ROOT(072) — all perform arithmetic operations on
BCD data.

For INC(038) and DEC(039) the source and result words are the same. That is,
the content of the source word is overwritten with the instruction result. All other
instructions change only the content of the words in which results are placed,
i.e., the contents of source words are the same before and after execution of any
of the other BCD calculation instructions.

STC(040) and CLC(041), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the Carry Flag (0CY) in
their results. Binary calculations and shift operations also use CY.

264

BCD Calculations

Section 5-20

The addition and subtraction instructions include CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the calcu-
lation, and to use the result placed in CY, if required, before it is changed by exe-
cution of any other instruction.

5-20-1 INCREMENT - INC(038)

Description

Flags

Ladder Symbols Operand Data Areas
INC(038) @INC(038) Wd: Increment word (BCD)
IR, SR, AR, DM, EM, HR, LR
Wwd Wd

When the execution condition is OFF, INC(038) is not executed. When the exe-
cution condition is ON, INC(038) increments Wd, without affecting Carry (CY).

ER: Wd is not BCD

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the incremented result is 0.

5-20-2 DECREMENT - DEC(039)

Description

Flags

Ladder Symbols Operand Data Areas
DEC(039) @DEC(039) Wd: Decrement word (BCD)
IR, SR, AR, DM, EM, HR, LR
Wd Wwd

When the execution condition is OFF, DEC(039) is not executed. When the exe-
cution condition is ON, DEC(039) decrements Wd, without affecting CY.
DEC(039) works the same way as INC(038) except that it decrements the value
instead of incrementing it.

ER: Wd is not BCD

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

EQ: ON when the decremented result is 0.

5-20-3 SET CARRY — STC(040)

Ladder Symbols

— STC(040) —— @STC(040)

When the execution condition is OFF, STC(040) is not executed.When the ex-
ecution condition is ON, STC(040) turns ON CY (SR 25504).

Note Refer to Appendix C Error and Arithmetic Flag Operation for a table listing the

instructions that affect CY.

5-20-4 CLEAR CARRY - CLC(041)

Ladder Symbols

— CLC(041) —1 @CLC(041)

265

BCD Calculations

Section 5-20

Note

When the execution condition is OFF, CLC(041) is not executed.When the ex-
ecution condition is ON, CLC(041) turns OFF CY (SR 25504).

CLEAR CARRY is used to reset (turn OFF) CY (SR 25504) to “0.”

CY is automatically reset to “0” when END(001) is executed at the end of each
cycle.

Refer to Appendix C Error and Arithmetic Flag Operation for a table listing the
instructions that affect CY.

5-20-5 BCD ADD - ADD(030)

Operand Data Areas

Ladder Symbols Au: Augend word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR, #
—1 ADD(030) —1 @ADD(030)
Ad: Addend word (BCD)
Au Au
IR, SR, AR, DM, EM, HR, TC, LR, #
Ad Ad R: Result word
R R
IR, SR, AR, DM, EM, HR, LR

Description

Flags

Example

0000

When the execution condition is OFF, ADD(030) is not executed. When the exe-
cution condition is ON, ADD(030) adds the contents of Au, Ad, and CY, and
places the result in R. CY will be set if the result is greater than 9999.

Au| +|Ad| +|CY|— [CY| |R

ER: Au and/or Ad is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

If 00002 is ON, the program represented by the following diagram clears CY with
CLC(041), adds the content of LR 25 to a constant (6103), places the result in
DM 0100, and then moves either all zeros or 0001 into DM 0101 depending on
the status of CY (25504). This ensures that any carry from the last digit is pre-
served in R+1 so that the entire result can be later handled as eight-digit data.

ml

266

Address | Instruction Operands
00000 | LR 00002
[cLocoa) 00001 | OUT TRO
00002 | CLC(041)
PR 00003 | ADD(030)
LR 25
LR 25
— #6103
DM 0100
roeon DM 0100 00004 | AND 25504
; 00005 | MOV(021)
| MOV(021) 20007
#0001 DM 0101
DM o101 00006 | LD TRO
25804 —— 00007 | AND NOT 25504
l ©D 00008 | MOV(021)
#0000 #0000
DM o101 DM 0101

BCD Calculations

Section 5-20

Although two ADD(030) can be used together to perform eight-digit BCD addi-
tion, ADDL(054) is designed specifically for this purpose.

5-20-6 DOUBLE BCD ADD - ADDL(054)

Limitations

Description

Flags

Example

Operand Data Areas

Ladder Symbols Au: First augend word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR
ADDL(054) — @ADDL(054)
Ad: First addend word (BCD)
Au Au
IR, SR, AR, DM, EM, HR, TC, LR
Ad Ad R: First result word
R R IR, SR, AR, DM, EM, HR, LR

Each of the following pairs must be in the same data area: Au and Au+1, Ad and
Ad+1, and R and R+1.

When the execution condition is OFF, ADDL(054) is not executed. When the
execution condition is ON, ADDL(054) adds the contents of CY to the 8-digit val-
ue in Au and Au+1 to the 8-digit value in Ad and Ad+1, and places the result in R
and R+1. CY will be set if the result is greater than 99999999.

Au + 1 Au

Ad + 1 Ad

+ cY
CcY R+1 R

ER: Au and/or Ad is not BCD.
The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.
CY: ON when there is a carry in the result.
EQ: ON when the result is 0.
When 00000 is ON, the following program adds two 12-digit numbers, the first
contained in LR 20 through LR 22 and the second in DM 0012. The result is

placed in LR 10 through HR 13. In the second addition (using ADD(030)), any
carry from the first addition is included. The carry from the second addition is

267

BCD Calculations

Section 5-20

00000

placed in HR 13 by using @ ADB(050) (see 5-21-1 BINARY ADD — ADB(050))

with two all-zero constants to indirectly place the content of CY into HR 13.

Address | Instruction Operands
: CLC(041) I
00000 LD 00000
@ADDL(054) 00001 | CLC(041)
LR 20 00002 | @ADDL(054)
DM 0010 LR 20
HR 10 DM 0010
HR 10
9ADD(030) 00003 | @ADD(030)
LR 22 LR 22
Mmootz DM 0012
HR 12 HR 12
@ADB(050) 00004 | @ADB(050)
#0000 #0000
40000 #0000
TR 13 HR 13
5-20-7 BCD SUBTRACT - SUB(031)
Operand Data Areas
Ladder Symbols Mi: Minuend word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR, #
SUB(031) —1 @SUB(031)
Su: Subtrahend word (BCD)
Mi Mi
IR, SR, AR, DM, EM, HR, TC, LR, #
Su Su R: Result word
R R
IR, SR, AR, DM, EM, HR, LR

Description

Flags

268

&Caution

When the execution condition is OFF, SUB(031) is not executed. When the exe-
cution condition is ON, SUB(031) subtracts the contents of Su and CY from Mi,
and places the result in R. If the result is negative, CY is set and the 10’s comple-
ment of the actual result is placed in R. To convert the 10’s complement to the
true result, subtract the content of R from zero (see example below).

Mi|—|Sul—-|CY|— |CY| (R

Note The 2’s COMPLEMENT — NEG(160) instruction can be used to convert binary

data only, it cannot be used with BCD data.

ER: Mi and/or Su is not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.
EQ: ON when the result is 0.

Be sure to clear the carry flag with CLC(041) before executing SUB(031) if its
previous status is not required, and check the status of CY after doing a subtrac-
tion with SUB(031). If CY is ON as a result of executing SUB(031) (i.e., if the re-
sult is negative), the result is output as the 10’s complement of the true answer.
To convert the output result to the true value, subtract the value in R from 0.

BCD Calculations

Section 5-20

Example

00002

When 00002 is ON, the following ladder program clears CY, subtracts the con-
tents of DM 0100 and CY from the content of 010 and places the result in HR 20.

If CY is set by executing SUB(031), the result in HR 20 is subtracted from zero
(note that CLC(041) is again required to obtain an accurate result), the result is
placed back in HR 20, and HR 2100 is turned ON to indicate a negative result.

If CY is not set by executing SUB(031), the result is positive, the second subtrac-
tion is not performed, and HR 2100 is not turned ON. HR 2100 is programmed as
a self-maintaining bit so that a change in the status of CY will not turn it OFF
when the program is recycled.

In this example, differentiated forms of SUB(031) are used so that the subtrac-
tion operation is performed only once each time 00002 is turned ON. When an-
other subtraction operation is to be performed, 00002 will need to be turned OFF
for at least one cycle (resetting HR 2100) and then turned back ON.

25504

25504

— |

Note

~ Address | Instruction Operands
{ CLC(041) |
00000 LD 00002
00001 ouT TRO
@SUB(031) First 00002 | CLC(041)
010 subtraction 00003 | @SUB(031)
DM 0100 010
R 20 DM 0100
HR 20
{ CLC(041) | N 00004 | AND 25504
00005 | CLC(041)
@SUB(031) Second 00006 | @SUB(031)
40000 subtraction #0000
HR 20
HR 20
HR 20 HR 20
s 00007 | LD TRO
1R 2100 00008 | AND 25504
00009 OR HR 2100
Turned ON to indicate 00010 | OUT HR 2100

negative result.

The first and second subtractions for this diagram are shown below using exam-
ple data for 010 and DM 0100.

The actual SUB(031) operation involves subtracting Su and CY from 10,000
plus Mi. For positive results the leftmost digit is truncated. For negative results
the 10s complement is obtained. The procedure for establishing the correct an-
swer is given below.

First Subtraction

IR010 1029
DM 0100 — 3452
CcYy -0
HR 20 7577 (1029 + (10000 — 3452))
cY 1 (negative result)
Second Subtraction
0000
HR 20 -7577
CcY -0
HR 20 2423 (0000 + (10000 — 7577))
CY 1 (negative result)

In the above case, the program would turn ON HR 2100 to indicate that the value
held in HR 20 is negative.

269

BCD Calculations

Section 5-20

5-20-8 DOUBLE BCD SUBTRACT - SUBL(055)

Limitations

Description

Flags

270

Operand Data Areas

Ladder Symbols Mi: First minuend word (BCD)
IR, SR, AR, DM, EM, HR, TC, LR
SUBL(055) — @SUBL(055)
Su: First subtrahend word (BCD)
Mi Mi
IR, SR, AR, DM, EM, HR, TC, LR
Su Su R: First result word
R R IR, SR, AR, DM, EM, HR, LR

Note

Each of the following pairs must be in the same data area: Mi and Mi+1, Su and
Su+1, and R and R+1.

When the execution condition is OFF, SUBL(055) is not executed. When the
execution condition is ON, SUBL(055) subtracts CY and the 8-digit contents of
Su and Su+1 from the 8-digit value in Mi and Mi+1, and places the resultin R and
R+1. If the result is negative, CY is set and the 10’s complement of the actual
result is placed in R. To convert the 10’s complement to the true result, subtract
the content of R from zero. Since an 8-digit constant cannot be directly entered,
use the BSET(071) instruction (see 5-16-3 BLOCK SET — BSET(071)) to create
an 8-digit constant.

Mi + 1 Mi
Su+1 Su
— CcY
CcY R+1 R

The DOUBLE 2’s COMPLEMENT — NEGL(161) instruction can be used to con-
vert binary data only, it cannot be used with BCD data.

ER: Mi, M+1,Su, and Su+1 are not BCD.

The content of a word containing an indirect DM/EM address is not BCD
or the DM/EM area boundary has been exceeded.

CY: ON when the result is negative, i.e., when Mi is less than Su.

EQ: ON when the result is 0.

The following example works much like that for single-word subtraction. In this
example, however, BSET(071) is required to clear the content of DM 0000 and
DM 0001 so that a negative result can be subtracted from 0 (inputting an 8-digit
constant is not possible).

BCD Calculations

00003
|

I CLC(041)

Section 5-20

Example

@SUBL(055) First

subtraction

HR 20

120

DM 0100

25504

| @BSET(071)
|

#0000

DM 0000

DM 0001
: CLC(041) |

@SUBL(055)

Second
subtraction

DM 0000

DM 0100

DM 0100
25504
HR 2100 Turned ON to indicate
— negative result.
Address | Instruction Operands Address | Instruction Operands
00000 LD 00003 00006 CLC(041)
00001 ouT TRO 00007 @SUBL(055),
00002 CLC(041) DM 0000
00003 @SUBL(055) DM 0100
HR 20 DM 0100
120 00008 LD TRO
DM 0100 00009 AND 25504
00004 AND 25504 00010 OR HR 2100
00005 @BSET(071) 00011 ouT HR 2100
#0000
DM 0000
DM 0001
5-20-9 BCD MULTIPLY — MUL(032)
Operand Data Areas
Ladder Symbols Md: Multiplicand (BCD)
IR, SR, AR, DM, EM, HR, TC, LR, #
— MUL(032) — @MUL(032)
Mr: Multiplier (BCD)
Md Md
IR, SR, AR, DM, EM, HR, TC, LR, #
Mr Mr R: First result word
R R IR, SR, AR, DM, EM, HR LR

Limitations

R and R+1 must be in the same data area.

271

BCD Calculations Section 5-20
Description When the execution condition is OFF, MUL(032) is not executed. When the exe-
cution condition is ON, MUL(032) multiplies Md by the content of Mr, and places
the result In R and R+1.
X
r
| R+ | R |
Example When IR 00000 is ON with the following program, the contents of IR 013 and DM
0005 are multiplied and the result is placed in HR 07 and HR 08. Example data
and calculations are shown below the program.
00000 "
“ MUL(032) Address | Instruction Operands
o1 00000 | LD 00000
00001 | MUL(032)
DM 0005
HR 07 013
DM 00005
HR 07
Md: IR 013
3] 3] s5]s6
Mr: DM 0005
X oo 2]s
R+1: HR 08 R: HR 07
o] o] o] 8] 3] 9] o] 0
Flags ER: Md and/or Mr is not BCD.

The c